Jawaban contoh soal Transformasi Laplace
F (t ) 1
1 `
L{F (t )} e st 1 f ( s) 0
p
Lim e st dt p
0
1 lim e st p s
p
0
1 1 lim 0 p se se 0
1 s
1 s
f (s )
F (t ) t
2 `
L{F (t )} e st t dt 0
p
1 lim t. d e st p s 0 p
1 lim te st e st dt s p 0
p
1 1 lim te st e st p s s
o
1 1 1 lim pe sp e sp 0e 0 e 0 s p s s 1 1 0 0 0 s s
1 1 0 s s 1 s2
F (t ) e at 3 `
L{F (t )} e st t e at dt 0
p
lim e ( s a ) t dt p
0
1 lim e ( s a )t s a p
1 1 1 lim ( s a ) ( s a ) 0 p (s a) s e
1 sa
F (t ) sin at
4
L{F (t )} e st sin at dt 0
p 0
p
0
p
Lim e st p
0
1 d (cos at ) a p
1 1 cos at.e st cos atd (e st ) a a 0
Lim
p
0
1 s cos at.e st cos at.e st dt a a p
Lim
p
p
0
1 s 1 cos at.e st e st . d (sin at ) a a0 a
Lim
p
p
0
1 s cos at.e st 2 (e st sin at sin at.d (e st ) a a 0
Lim
p
p
1 s Lim cos at.e st 2 (e st sin at sin at. se st ) p a 0 a p
1 s s2 Lim cos at.e st 2 e st sin at 2 sin at.se st ) p a a 0 a p
a2 1 s st st Lim 2 cos at.e 2 sin at.e 2 p a s a a
a 2 cos at s. sin at 2 st a2 s2 a.e st a .e
a2 a2 s2
a2 1 a2 s2 a
a a s2 2
1 0 0 0 a
p
0
p
0
p
0
p
0
F (t ) cos at
5
L{F (t )} e st cos at dt 0
p
Lim e st p
0
1 d (sin at ) a
1 1 Lim sin at.e st sin atd (e st ) p a 0 a
1 s Lim sin at.e st sin at.e st dt p a a p
p
0
p
0
p
1 s 1 Lim sin at.e st e st . d ( cos at ) p a a0 a
0
p
p 1 s Lim sin at.e st 2 (e st ( cos at ) cos at.d (e st ) p a 0 a
p
p 1 s st st Lim sin at.e 2 (e cos at ) cos at. se st dt ) p a 0 a
p 1 s st s2 st Lim sin at.e 2 (e cos at ) 2 cos at.e st ) p a a a 0
Lim p
a2 1 s sin at.e st 2 cos at.e st 2 2 s a a a
a 2 sin at s. cos at 2 st s 2 a 2 a.e st a .e
a2 s2 a2
s 0 0 0 2 a
p
0
0
0
p
0
a2 s s2 a2 a2
a s a2 2
L{F (t )} e st F (t )dt 0
6 p
lim e st tdt p
0
p
1 lim t. d (e st ) p s 0 p
1 lim te st e st dt s p 0
1 1 lim te st e st s p s
p
0
1 1 0 s s
1 s2
f (s )
L{5t 3} L{5t 3a} L{5t} L{3} 7 5 L{t} 3L{1}
5
1 1 3 2 s s
5 3 s2 s
L{6 sin 2t 5 cos 2t} L{6 sin 2t} L{5 cos 2t}
8 6 L{sin 2t} 5 L{cos 2t}
6
2 s 5 2 s 4 s 4 2
12 5s s2 4
L{( t 2 1) 2 } L{t 4 2t 2 1} 9 L{t 4 } L{2t 2 } L{1} L{t 4 } 2 L{t 2 } L{1}
4! s
4 1
2! 1 2 21 s s
24 4 1 s5 s3 s
L{4e 5t 6t 2 3 sin 4t 2 cos 2t} 10 L{4e 5t } L{6t 2 } L{3 sin 4t} L{2 cos 2t}
4 L e 5t 6 L t 2 3L sin 4t 2 L cos 2t 4
1 2 4 s 6 3 3 2 2 2 s 5 s s 4 s 4
4 12 12 2s 3 2 2 s 5 s s 16 s 4
L{F (t )}
11 Jika
6 f ( s) ( s 2) 3
L{F (3t )}
maka
6
s 3 2 3
12
3
6 .9 ( s 6) 3
L{sin at}
1 s f( ) 3 3
a f (s) s a2 2
F ' (t ) a cos at , F ' ' (t ) a 2 sin at
F (t ) sin at
Misal
diperoleh L{sin at}
sehingga
1 L{F ' ' (t ) a2
Dengan menggunakan sifat transformasi Laplace dari turunan-turunan diperoleh 1 L{sin at} 2 sf ( s) sF (0) F ' (0) f a
1 2 a s 2 s (0) a 2 2 a s a
1 a2
1 a2
as 2 as 2 a 3 s2 a2
as 2 a 2 2 s a
a s a2 2
L{t sin at}
13 Tentukan Jawab L{sin at}
a s a2 2
n
, maka menurut sifat perkalian dari pangkat t diperoleh
L{tF (t )} 1
n
L{t sin at} (1)
d n f ( s) ds n
, sehingga
d a 2 ds s a 2
2as (s a 2 ) 2 2
L{t 2 cos at} 14 Tentukan
d2 s L{t cos at} (1) 2 2 ds s a 2 2
Menurut sifat di atas,
2
d a2 s2 2 ds ( s a 2 ) 2
2 s 3 6a 2 s (s 2 a 2 ) 3
3s 12 3s 12 1 1 L 2 L 2 2 s 9 s 9 s 9
L1
15
s 1 1 12 L 2 s 9 s 9
3L1
2
3 cos 3t 12
sin 3t 3
1 sinh 3t t s 9
L1
16
2
maka
1 1 1 2 t sinh 3t L e 2 3 ( s 2 s 13 ( s 2) 9
L1
2
3s 16 2 s s 6
L1
17 Tentukan
Jawab 3s 16 3s 16 1 L 2 s s 6 ( s 2)( s 3)
L1
3s 16 A B ( s 2)( s 3) s 2 s 3
A( s 3) B( s 2) s2 s 6
( A B) s (2 B 3 A) s2 s 6
atau A+B = 3 dan 2B-3A = 16 atau 2(3-A)–3A=16 sehingga didapat A = -2 dan B = 5
3s 16 2 5 1 L s 2 s 3 ( s 2)( s 3)
L1
5 2 1 L s 2 s 3
L1
2e 2t 5e 3t
s 1 2 ( s 3)( s 2 s 2)
L1 18 Tentukan Jawab
s 1 A Bs C 1 2 L 2 ( s 3)( s 2 s 2) s 3 ( s 2 s 2)
L1
A Bs C A( s 2 2 s 2) ( Bs C )( s 3) s 3 s 2 2s 2 ( s 3)( s 2 2s 2) ` Sehingga
As 2 2 As 2 A Bs 2 (3B C ) s 3C ( s 3)( s 2 2 s 2)
( A B ) s 2 (2 A 3B C ) s (2 A 3C ) s 1 2 ( s 3)( s 2 2 s 2) ( s 3)( s 2s 2)
Diperoleh A+B = 0, 2A+3B+C=1, 2A+3C=-1
Atau A =
4 5
,B=
4 5
, dan C =
1 5
s 1 2 ( s 3)( s 2 s 2)
L1
Akhirnya diperoleh
4 4 1 s 5 5 5 L1 2 s 3 ( s 2 s 2)
4 4 1 s 5 5 5 4 L1 1 4 ( s 1) L1 2 5 s 3 5 ( s 1) 2 1 s 3 ( s 2 s 2) 4 4 e 3t e t cos t 5 5