INTRODUCCION El suelo constituye el material de ingeniería más heterogéneo y más impredecible en su comportamiento, es por ello que los coeficientes de seguridad que suelen utilizarse son al menos de 3 con relación a la resistencia. La presencia de diferentes tipos de suelos y de distintos tipos de estructuras da lugar a la existencia de distintos tipos de cimentaciones. La capacidad de carga, que a menudo se llama estabilidad, es la capacidad del suelo para soportar una carga sin que se produzca fallas dentro de su masa. La capacidad de un suelo para soportar una carga varía no solamente con la resistencia del suelo, sino también con la magnitud y distribución de la carga. Cuando una carga Q se aplica a un suelo en forma de incrementos graduales, el suelo se deforma y la curva de cargaasentamiento es similar a las curvas de esfuerzo-deformación. (Sowers, 1972)
CONCEPTOS BASICOS
Suelos Compresibles
• La compresibilidad es el grado en que una masa de suelo disminuye su volumen bajo el efecto de una carga. A continuación se dan algunos ejemplos de compresibilidad para diversos suelos: • Las gravas y las arenas son prácticamente incompresibles. Si se comprime una masa húmeda de estos materiales no se produce ningún cambio significativo en su volumen. • Las arcillas son compresibles. Si se comprime una masa húmeda de arcilla, la humedad y el aire pueden ser expelidos, lo que trae como resultado una reducción de volumen que no se recupera inmediatamente cuando se elimina la carga. En general, la compresibilidad es aproximadamente proporcional al índice de plasticidad. Mientras mayor es el IP, mayor es la compresibilidad del suelo.
Capacidad de Carga
• En Cimentaciones, la capacidad de carga isible o capacidad portante isible de una cimentación debe entenderse como la máxima carga por unidad de área que puede aplicarse sin que se produzcan desperfectos en la estructura soportada en las condiciones de servicio, contando además con un razonable margen de seguridad. Técnicamente, la capacidad de carga es la máxima presión de o entre la cimentación y el terreno tal que no se produzcan una falla o rotura por cortante del suelo o un asentamiento diferencial excesivo. (Laura, 2016)
Capacidad de carga última neta
q neta = qu – q Donde: q neta: Capacidad ultima neta qu: Carga ultima
• Se define como la presión última por unidad de área de la cimentación soportada por el suelo, en exceso de la presión causada por el suelo alrededor al nivel de la cimentación. Si la diferencia entre el peso específico del material que conforma la fundación (ej. HºAº) y el peso específico del suelo que rodea a ésta se supone despreciable, entonces:
TEORÍAS DE CAPACIDAD DE CARGA Uno de los primeros esfuerzos por adaptar a la mecánica de suelos, son los resultados de la Mecánica del Medio Continuo en la teoría de Terzaghi a partir de esta se generaron otras teorías como: Prandtl Hill Skempton Meyerhof Zaevaert
La teoría de Terzaghi Terzaghi (1943) fue el primero en presentar una teoría para evaluar la capacidad última de carga de cimentaciones superficiales, la cual dice que una cimentación es superficial si la profundidad Df de la cimentación es menor que o igual al ancho de la misma. Esta teoría cubre el caso más general, se aplica a suelos con cohesión y fricción, y su impacto en la Mecánica de Suelos ha sido de tal trascendencia que aun hoy es posiblemente la teoría más usada para el cálculo de capacidad de carga en los proyectos prácticos, especialmente en el caso de cimientos poco profunda.
Dónde: •
ᵠ = Angulo de fricción.
•
t = Esfuerzo cortante.
•
c = Cohesión del terreno en cimentación.
•
tg ᵠ = Tangente del ángulo ᵠ.
FALLAS DE SUELO
Falla por corte general
• Una falla por corte general involucra una rotura total del suelo adyacente. Hay una falla continua por corte del suelo desde la base del cimiento hasta la superficie del terreno. En la gráfica carga. Asentamiento del cimiento, hay una carga distinta con la que la cimentación falla, y esto es generado por la carga última aplicable Qu. El valor de Qu dividido por el ancho B y la longitud L de la cimentación se considera que es la capacidad portante última, qu, del terreno de fundación. La capacidad portante última ha sido definida como el esfuerzo de carga que causa una falla catastrófica súbita de la cimentación.
Falla por corte local • La falla por corte local involucra una rotura del suelo sólo a inmediaciones del cimiento. El suelo se eleva en ambos lados del cimiento, pero la elevación (desplazamiento) no es significante como en el corte general. La falla por corte local puede ser considerada una fase transicional entre la falla por corte general y la falla por punzonamiento. Debido a su naturaleza transicional, la capacidad portante puede ser definido como el primer punto no lineal en la curva carga .asentamiento (círculo abierto) o al punto donde el asentamiento crece rápidamente (círculo cerrado).
Falla por punzamiento
• Una falla por punzonamiento no desarrolla las distintas superficies de corte asociadas con una falla por corte general. En una falla por punzonamiento, el suelo fuera del área cargada no es afectado y hay un movimiento mínimo del suelo en ambos lados del cimiento. El proceso de deformación del cimiento involucra la compresión del suelo debajo del mismo, también el corte vertical del suelo alrededor del perímetro del cimiento. Como vemos en la Figura 8c, la curva carga. Asentamiento no tiene un cambio dramático, y para corte por punzonamiento la capacidad portante normalmente se define como el primer punto no lineal en la curva carga-asentamiento (círculo abierto)
Ecuación general de capacidad de carga. (Cimentación corrida)
Dónde: qc = Carga de falla. Nc, Nq, Ny = Factores de capacidad de carga. q = Sobre carga efectiva. B = Ancho de la zapata.
Factor de seguridad El cálculo de la capacidad de carga permisible bruta de cimentaciones superficiales requiere aplicar un factor de seguridad (FS) a la capacidad de carga última bruta.
Ecuación general de capacidad de carga.
Ecuación general de capacidad de carga.
DONDE
Teoría de George Geoffrey Meyerhof La principal diferencia entre las teorías de Terzaghi y Meyerhof es que este último considera la resistencia al corte del suelo sobre el nivel de desplante de la cimentación, mientras que el primero lo ignora. Meyerhof permite que las zonas de falla se extiendan hasta la superficie del terreno (Meyerhof, 1951). La superficie de falla asumida por Meyerhof se muestra del lado derecho en la Figura 14 y Figura 15. (Sowers, 1972)
• El mecanismo de falla de una cimentación a poca profundidad está dividido en tres zonas (Figura 15), la primera abc es una cuña elástica de esfuerzos uniformes que se puede considerar en estado activo de Rankine; la segunda bcd es una cuña limitada por una curva de espiral logarítmica cd y es una zona de esfuerzo cortante radial; la tercera bde es una zona de corte mixta donde el cortante varía entre los límites del corte radial y del corte plano, dependiendo de la rugosidad y profundidad de la cimentación y se considera que está en estado pasivo de Rankine. El plano be es la denominada superficie libre equivalente o superficie de Meyerhof y en esta superficie actúan los esfuerzos normales Po y los tangenciales So productos del peso del suelo por encima de be. (Sowers, 1972)
Usando el método de superposición de efectos, finalmente la ecuación de capacidad portante última de Meyerhof es una expresión matemática completamente similar a la de Terzaghi. Con las expresiones establecidas por Prandtl (1920) para , por Reissner (1924) para y por el mismo Meyerhof (1951) para un valor aproximado de , estos factores de capacidad portante para una cimentación superficial corrida y horizontal sometida a carga vertical son:
• Para determinar la capacidad portante última de cimentaciones circulares y rectangulares de lados B y L, los factores parciales deben multiplicarse por los correspondientes factores de forma, de origen empírico, que son:
Teoría de Jorge Brinch Hansen
Donde es un límite inferior calculado por Lundgren y Mortensen (1953), y luego por Odgaard y Christensen. En 1961, Brinch Hansen propuso una expresión diferente:
• En una conferencia presentada en Japón (en octubre de 1968) y publicada después de su muerte, J. Brinch Hansen (1970) resume las recomendaciones para el cálculo de la capacidad portante última de cimentaciones superficiales siguiendo el marco general introducido por Terzaghi [ecuación (2)], con los tres factores de capacidad portante, dos de ellos idénticos a los usados por Meyerhof (1963):
Teoría de Aleksandar Sedmak Vesic
• Vesic (1973) presenta un punto de vista complementario del desarrollo del análisis de la capacidad portante de cimentaciones superficiales. • La primera aplicación de estas soluciones en el diseño de cimentaciones es debido a Caquot (1934) y Buisman (1935), que inspiraron a los primeros intentos de extensión de los cálculos de plasticidad suelos con peso (Raes, 1941) y sugirieron la superposición del término con los otros dos de la ecuación de la capacidad portante.
El efecto de la compresibilidad del suelo y el tamaño del cimiento es ampliamente discutido. La disminución de la resistencia del suelo cuando el tamaño del cimiento aumenta al parecer es debido a tres causas:
La envolvente de los círculos de Mohr no es una línea recta; La falla o rotura se desarrolla progresivamente sobre la superficie de falla; Existen zonas de muy baja resistencia en todos los suelos naturales. Esta disminución se debe principalmente el término .
OTRAS SOLUCIONES PARA DETERMINAR LA CAPACIDAD PORTANTE DE LOS SUELOS Ensayo de compresión triaxial Es el ensayo más común, puede aplicarse para todos los tipos de suelo excepto para las arcillas muy sensibles y permite aplicar diferentes procedimientos. La prueba se realiza en una probeta cilíndrica de suelo que tiene una relación altura/diámetro de 2:1, los tamaños comunes son de 16 X 38 mm y 100 x 50 mm.
Ensayo de corte directo Recibe este nombre debido a que se miden los esfuerzos normales y de corte en el plano de falla; se corta un prisma rectangular o cilíndrico de una muestra de suelo (o se remoldea, según sea necesario) y se introduce con precisión en una caja metálica dividida en dos mitades horizontales. En el aparato de tipo estándar la caja es de 60 x 60 mm, puede ser tanto de forma cuadrada como circular y fue desarrollado por Casagrande, pero para los suelos de granos más gruesos y quizá arcillas agrietadas se usa una versión más grande.
Ensayo de penetración estándar (SPT) Se emplea para conocer la resistencia de un terreno y su capacidad de deformarse, conocido también como ensayo dinámico está especialmente indicado para arenas debido a que en suelos arcillosos presenta bastantes dificultades de interpretación, también en suelos que contengan gravas deberá de tenerse cuidado con la influencia del tamaño de partículas del suelo. Consiste en determinar el número de golpes necesarios (N) para hincar un muestreador a cierta profundidad en el suelo.
Ensayo de penetración de cono (T) Originalmente conocido como ensayo de penetración con cono holandés, es un método utilizado para determinar los materiales en un perfil de suelo y hacer un estimado de las propiedades ingenieriles, también se le conoce como prueba de penetración estática, a diferencia del SPT no necesita de barrenos para su realización. Se efectúa empujando el cono de penetración estándar (de acuerdo con la norma ASTM D 3441, con 60° de la punta a la base, un diámetro de 35.7 mm con un área de sección de 10 cm²) en el suelo a un ritmo de 10 a 20 mm/s, el ensayo es detenido periódicamente para sujetar barras de 1 m y así extender la profundidad del sondeo; sin embargo, algunas configuraciones de empuje permiten una longitud extra de barra para hacer un empuje casi continuo, los primeros penetrómetros median únicamente la resistencia a la penetración, llamada resistencia a la penetración de punta.
CAPACIDAD PORTANTE DE LOS SUELOS CON FINES DE CIMENTACIÓN Tipologías: Las cimentaciones se clasifican en: Cimentaciones Superficiales y Cimentaciones Profundas. 1.- cimentaciones superficiales: •
Cimientos Corridos
• Zapatas • Vigas de Cimentación • Losa de Cimentación 2.- cimentaciones profundas: • Pilotes 3.- Cimientos Corridos: •
Son excavaciones superficiales para obras que no requieren refuerzos en el suelo.
Proceso constructivo de un Cimiento corrido Proceso constructivo de un Cimiento a).- Trazado y replanteo b).- Excavación c).- Perfilado y limpieza de la zanja d).- Colocación de fierros para las columnas e).- Colocación de la primera capa de concreto previo mojado de la zanja f).- Colocar las piedras dejando espacios para que el concreto los cubra g).- Colocar otra capa de concreto, hasta el nivel requerido, dejando en la parte superior piedras que sobresalgan en los lugares donde se va ubicar el sobre cimiento.
COEFICIENTES DE CAPACIDAD DE CARGA Las siguientes expresiones debidas a Prandtl (1920) corresponden a las fórmulas analíticas que proporcionan los valores de los coeficientes de carga de la fórmula polinómica de Brinch-Hansen. Nq tan 2 45 e tan 2
N c N q 1 cot N 2 N q 1 tan
Para el caso particular de f = 0, tenemos que los coeficientes de capacidad de carga valen respectivamente: Nq = 1 Nc = 5,14
Ng = 0
COEFICIENTES DE INCLINACIÓN Las expresiones que proporcionan los valores de los coeficientes de inclinación se deben a Schultze (1952), Caquot y Odgaard entre otros. Fci Fqi 1 90
Fi
2
1
2
CONCLUSIONES • Los tipos de fallas que puede tener un suelo por su capacidad portante son: falla por corte general, por punzamiento y por corte local. • Existen muchas teorías de capacidad de carga de las cuales Terzagui es la mas utilizada • La formula general de la capacidad portante esta dada por Meyerhof (1963). • En manera practica (ensayos de laboratorio) el ensayo de penetración estándar es un medio fácil para determinar la capacidad de carga isible del suelo y tiene la ventaja de proporcionar un perfil estratigráfico, además que las muestras obtenidas son alteradas pero representativas, razón por la que puede determinarse el tipo de suelo y hacer las correlaciones respectivas. • El ensayo de corte directo proporciona un valor del ángulo de fricción interna 5º mayor al obtenido en el ensayo triaxial, para mayor seguridad realizar la reducción recomendada con el factor de seguridad en corte (FS corte).
GRACI AS