II) TIPOS DE ESTADÍSTICA La estadística se divide en dos grandes áreas: 1.Estadística descriptiva: Se dedica a la descripción, visualización y resumen de datos originados a partir de los fenómenos de estudio. Los datos pueden ser resumidos numérica o gráficamente. Su objetivo es organizar y describir las características sobre un conjunto de datos con el propósito de facilitar su aplicación, generalmente con el apoyo de gráficas, tablas o medidas numéricas. 2.Estadística inferencial: Se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la población bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas sí/no (prueba de hipótesis), estimaciones de unas características numéricas (estimación), pronósticos de futuras observaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión). Otras técnicas de modelamiento incluyen análisis de varianza, series de tiempo y minería de datos. Su objetivo es obtener conclusiones útiles para lograr hacer deducciones acerca de la totalidad de todas las observaciones hechas, basándose en la información numérica. La estadística inferencial, por su parte, se divide en estadística paramétrica y estadística no paramétrica.
Estadística no paramétrica: es una rama de la estadística que estudia las pruebas y modelos estadísticos cuya distribución subyacente no se ajusta a los llamados criterios paramétricos. Su distribución no puede ser definida a priori, pues son los datos observados los que la determinan. La utilización de estos métodos se hace recomendable cuando no se puede asumir que los datos se ajusten a una distribución conocida, cuando el nivel de medida empleado no sea, como mínimo, de intervalo.
Estadística paramétrica: es una rama de la estadística inferencial que comprende los procedimientos estadísticos y de decisión que están basados en las distribuciones de los datos reales. Estas son determinadas usando un número finito de parámetros. Esto es, por ejemplo, si conocemos que la altura de las personas sigue una distribución normal, pero desconocemos cuál es la media y la desviación de dicha normal. La media y la desviación típica de la desviación normal son los dos parámetros que queremos estimar. Cuando desconocemos totalmente qué distribución siguen nuestros datos entonces deberemos aplicar primero un test no paramétrico, que nos ayude a conocer primero la distribución. La mayoría de procedimientos paramétricos requiere conocer la forma de distribución para las mediciones resultantes de la población estudiada. Para la inferencia paramétrica es requerida como mínimo una escala de
intervalo, esto quiere decir que nuestros datos deben tener un orden y una numeración del intervalo. Es decir nuestros datos pueden estar categorizados en: menores de 20 años, de 20 a 40 años, de 40 a 60, de 60 a 80, etc, ya que hay números con los cuales realizar cálculos estadísticos. Sin embargo, datos categorizados en: niños, jóvenes, adultos y ancianos no pueden ser interpretados mediante la estadística paramétrica ya que no se puede hallar un parámetro numérico (como por ejemplo la media de edad) cuando los datos no son numéricos.
3.Estadística matemática: es la escala previa en el estudio de la estadística desde un punto de vista puramente formal, usando la teoría de la probabilidad y otras ramas de la matemática tales como álgebra lineal y análisis matemático. La estadística matemática trata de la obtención de información a partir de los datos. En la práctica tales datos contienen cierta aleatoriedad o incertidumbre. La estadística trabaja con estos datos usando los métodos de la teoría de la probabilidad.
Estadística descriptiva: parte que se encarga de describir los datos, esto es, de realizar un resumen y describir sus propiedades típicas. Inferencia estadística: parte que elabora conclusiones a partir de una muestra de los datos, en otras palabras, comprueba el ajuste de los datos a determinadas condiciones y proporciona una medida de la bondad de los mismos en términos probabilístico
III)
A) NATURALEZA DE LA ESTADISTICA
La estadística es una ciencia formal y una herramienta que estudia usos y análisis provenientes de una muestra representativa de datos, busca explicar las correlaciones y dependencias de un fenómeno físico o natural, de ocurrencia en forma aleatoria o condicional. Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Además, se usa
en áreas de negocios o instituciones gubernamentales ya que su principal objetivo es describir al conjunto de datos obtenidos para la toma de decisiones o bien, para realizar generalizaciones sobre las características observadas. Hoy en día, la estadística es una ciencia que se encarga de estudiar una determinada población por medio de la recolección, recopilación e interpretación de datos. Del mismo modo, también es considerada una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo. Hoy en día, la estadística es una ciencia que se encarga de estudiar una determinada población por medio de la recolección, recopilación e interpretación de datos. Del mismo modo, también es considerada una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo.
B) RELACIÓN CAUSAL
Variables independientes Una variable independiente es aquella cuyo valor no depende de otra variable. Es aquella característica o propiedad que se supone es la causa del fenómeno estudiado. En investigación experimental se llama así a la variable que el investigador manipula. Las variables independientes son las que el investigador escoge para establecer agrupaciones en el estudio, clasificando intrínsecamente a los casos del mismo. Un tipo especial son las variables de control, que modifican al resto de las variables independientes y que de no tenerse en cuenta adecuadamente pueden alterar los resultados por medio de un sesgo.
Variables dependientes
Una variable dependiente es aquella cuyos valores dependen de los que tomen otra variable. La variable dependiente en una función que suele representar por y. La variable dependiente se representa en el eje ordenadas. Son las variables de respuesta que se observan en el estudio, y que podrían estar influidas por los valores de las variables independientes. La variable dependiente es el factor que es observado y medido para determinar el efecto de la variable independiente.