Chapter 17 Exercise 17.1 Q. 1. x2 + 10x + 21 = 0
Checking solutions x2 − 3x + 2 = 0
(x + 3)(x + 7) = 0 x+3=0
OR
(1)2 − 3(1) + 2 = 0
x+7=0
x = −3 OR
3−3=0
x = −7
0=0
Checking solutions x2
+ 10x + 21 = 0
True
∴ x = 1 is a solution.
(−3)2 + 10(−3) + 21 = 0
x2 − 3x + 2 = 0
9 − 30 + 21 = 0
(2)2 − 3(2) + 2 = 0
30 − 30 = 0
4−6+2=0
0=0
6−6=0
True
0=0
∴ x = −3 is a solution.
True
∴ x = 2 is a solution.
x2 + 10x + 21 = 0 (−7)2 + 10(−7) + 21 = 0
Q. 3. x2 − 5x = 0
49 − 70 + 21 = 0
x(x − 5) = 0
70 − 70 = 0 0=0
x=0
OR
x−5=0 x=5
True Checking solutions
∴ x = −7 is a solution. Q. 2. x2 − 3x + 2 = 0 (x − 1)(x − 2) = 0 x−1=0
OR
x−2=0
x=1
OR
x=2
x2 − 5x = 0 x2 − 5x = 0 (5)2 − 5(5) = 0 (0)2 − 5(0) = 0 0−0=0 25 − 25 = 0 True 0=0 ∴ x = 0 is a solution True ∴ x = 5 is a solution
Q. 4. x2 − x − 20 = 0 (x + 4)(x − 5) = 0 x+4=0
OR
x−5=0
x = −4 OR
x=5
Checking solutions x2 − x − 20 = 0 (−4)2 − (−4) − 20 = 0 16 + 4 − 20 = 0 20 − 20 = 0 0=0 True ∴ x = −4 is a solution
x2 − x − 20 = 0 (5)2 − (5) − 20 = 0 25 − 5 − 20 = 0 25 − 25 = 0 0=0 True ∴ x = 5 is a solution
Active Maths 2 (Strands 1–5): Ch 17 Solutions
1
Q. 5. x2 − 15x + 56 = 0 (x − 7)(x − 8) = 0 x−7=0
OR
x−8=0
x=7
OR
x=8
Q. 6. x2 − 64 = 0 x2 = 64
___
x = ±√64 x = ±8
Q. 7. 3x2 + 8x + 5 = 0 (3x + 5)(x + 1) = 0 3x + 5 = 0
OR
x+1=0
3x = −5 OR 5 x = −__ 3
x = −1
Checking solutions 3x2 + 8x + 5 = 0 52 5 3 −__ + 8 −__ + 5 = 0 3 3 25 40 3 × ___ – ___ + 5 = 0 93 3
( )
3x2 + 8x + 5 = 0
( )
3(−1)2 + 8(−1) + 5 = 0 3−8+5=0 8−8=0
0=0 40 15 − ___ + ___ = 0 3 3 True 40 40 ___ ___ − =0 ∴ x = –1 is a solution 3 3 0=0 True 5 __ ∴ x = − is a solution 3 (Keeping fractions as an improper fraction instead of a mixed fraction is a useful non-calculator technique for checking solutions and for use in further calculations.) 25 ___ 3
Q. 8. 4p2 − 16 = 0
(÷ 4)
p2 − 4 = 0 p2 = 4
__
p = ±√4 p = ±2
Q. 9. 7q2 + 8q + 1 = 0 (7q + 1)(q + 1) = 0 7q + 1 = 0
OR
7q = − 1 OR 1 q = −__ 7
2
q+1=0 q = −1
Active Maths 2 (Strands 1–5): Ch 17 Solutions
Checking solutions 7q2 + 8q + 1 = 0
7q2 + 8q + 1 = 0
12 1 7 −__ + 8 −__ + 1 = 0 7 7 8 1 ___ __ − +1=0 7 7 49 8 __ 1 __ 7 __ − + =0 7 7 7 8 __ 8 __ − =0 7 7 0=0
7(−1)2 + 8(−1) + 1 = 0
( )
( ) ( )
7−8+1=0 8−8=0 0=0 True ∴ q = –1 is a solution
True
1 __ ∴ q = − is a solution 7
Q. 10. 4x2 − 16x = 0
Q. 15. 81 − 4x2 = 0
(÷ 4)
x2 − 4x = 0
(9)2 − (2x)2 = 0
x(x − 4) = 0
(9 + 2x)(9 − 2x) = 0
x = 0 OR
x−4=0
9 + 2x = 0
x=4 Q. 11.
3y2
2x = −9 OR
− 2y − 1 = 0
3y = −1 1 y = −__ 3
OR
y−1=0
OR
y=1
−2x = −9 9 x = __ 2
Q. 16. 5a2 = 2a 5a2 − 2a = 0 a(5a − 2) = 0
Q. 12. 3x2 + 20x − 7 = 0
a = 0 OR
(3x − 1)(x + 7) = 0 3x − 1 = 0
OR
3x = 1 1 x = __ 3
OR
5a − 2 = 0 5a = 2 2 a = __ 5
x+7=0 x = −7 Q. 17. 100x2 − 25 = 0 4x2 = 1
(3x + 1)(x + 6) = 0 3x + 1 = 0
OR
3x = −1 OR 1 x = −__ 3 Q. 14. −2x2 + 11x = 0
(÷ 25)
4x2 − 1 = 0
Q. 13. 3x2 + 19x + 6 = 0 x+6=0 x = −6
(× −1)
2x2 − 11x = 0
1 x2 = __ 4 __ 1 x = ± __ 4
√
1 x = ±__ 2
Q. 18. 2x2 + 2x − 12 = 0
x (2x − 11) = 0 x = 0 OR
9 − 2x = 0
9 x = −__ OR 2 9 x = ±__ 2
(3y + 1)(y − 1) = 0 3y + 1 = 0
OR
2x − 11 = 0 2x = 11 11 x = ___ 2
(÷ 2)
x2 + x − 6 = 0 (x − 2)(x + 3) = 0 x − 2 = 0 OR x = 2 OR
x+3=0 x = −3
Active Maths 2 (Strands 1–5): Ch 17 Solutions
3
Q. 19. 25x2 − 25 = 0 x2
Q. 25. 3x2 − 24x + 36 = 0
(÷25)
−1=0
x2 − 8x + 12 = 0
x2 = 1
(x − 2)(x − 6) = 0
__
x = ±√ 1 x = ±1 Q. 20. 2b2 − b = 10
x − 2 = 0 OR
x−6=0
x = 2 OR
x=6
Q. 26. 5y2 − 125 = 0
2b2 − b − 10 = 0
5y2 = 125
(2b − 5)(b + 2) = 0 2b − 5 = 0 OR
y2 = 25
b+2=0
2b = 5 OR 5 b = __ 2
b = −2
y = ±5 Q. 27. (2x + 1)(x − 3) − 4 = 0 2x2 − 6x + x − 3 − 4 = 0
Q. 21. 2x2 − 3x = 0
2x2 − 5x − 7 = 0
x(2x − 3) = 0 x = 0 OR
(2x − 7)(x + 1) = 0
2x − 3 = 0
2x − 7 = 0
2x = 3 3 x = __ 2
2x = 7
3x2 − 9x + 4x − 12 − 10 = 0
(2x + 1)(2x + 3) = 0 2x + 7 = 0
(3x − 11)(x + 2) = 0 OR
x = −2
2x + 1 = 0
OR 25x − 14 = 0 25x = 14 14 x = ___ 25
OR
2x = −1 OR 1 x = −__ OR 2
(25x + 14)(25x − 14) = 0
3x + 2 = 0 3x = −2 2 x = −__ 3
Q. 30. 9x2 − 7x − 2 = 0 (9x + 2)(x − 1) = 0 9x + 2 = 0
Q. 24. 5y2 = 7y
OR
x−1=0
9x = −2 2 x = −__ 9
− 7y = 0
y(5y − 7) = 0 y = 0 OR 5y − 7 = 0
Q. 31. −6x2 + 5x + 1 = 0
5y = 7 7 y = __ 5
6x2
Active Maths 2 (Strands 1–5): Ch 17 Solutions
(× −1)
− 5x − 1 = 0
(6x + 1)(x − 1) = 0 6x + 1 = 0
OR
6x = −1 OR 1 x = −__ 6
4
2x = −3 3 x = −__ 2
(2x + 1)(3x + 2) = 0
(25x)2 − (14)2 = 0
25x = −14 OR 14 x = −___ OR 25
2x + 3 = 0
Q. 29. 6x2 + 7x + 2 = 0
Q. 23. 625x2 − 196 = 0
25x + 14 = 0
OR
2x = −1 OR 1 x = −__ OR 2
x+2=0
3x = 11 OR 11 x = ___ 3
x+1=0
Q. 28. 4x2 + 8x + 3 = 0
3x2 − 5x − 22 = 0 3x − 11 = 0
OR
7 x = __ 2
Q. 22. (3x + 4)(x − 3) = 10
5y2
(÷ 3)
x−1=0 x=1
Q. 32. 4x2 − 13x + 3 = 0
Checking solutions (non calculator working shown)
(4x − 1)(x − 3) = 0 4x − 1 = 0 OR
x−3=0
4x = 1 OR 1 x = __ 4
x=3
10m2 + 29m − 21 = 0
()
Q. 33. 10x2 − 37x + 7 = 0
18 ___
(5x − 1)(2x − 7) = 0 5x − 1 = 0 OR
2x − 7 = 0
5x = 1 OR 1 x = __ OR 5
2x = 7 7 x = __ 2
5
∴m=
(÷5) Q. 34. 80a2 − 245 = 0 2 16a − 49 = 0 16a2 = 49 49 a2 = ___ 16 ___ 49 a = ± ___ 16 7 __ a=± 4 Q. 35.
is a solution
( )
( )
245 ____ 2
203 42 − ____ − ___ = 0 2 2 245 ____ 2
+ 16b + 15 = 0
2b + 3 = 0
2b + 5 = 0
OR
2b = −3 OR 3 b = −__ OR 2 Q. 36.
5
2b = −5 5 b = −__ 2
− 6 + 13c = 0
True
∴ m = − is a solution 2 1 Q. 38. __x2 + 3x + 5 = 0 4 x2 + 12x + 20 = 0
(× 4)
x = −10
(× 10) Q. 39. x2 − 2.4x − 6.4 = 0 2 10x − 24x − 64 = 0 (÷ 2) 5x − 12x − 32 = 0 (5x + 8)(x − 4) = 0 5x + 8 = 0 OR x − 4 = 0 5x = −8 OR x=4 8 x = −__ 5
c+2=0
8c = 3 OR 3 c = __ 8
c = −2
Q. 37. 21 = 10m2 + 29m 10m2 + 29m − 21 = 0 (5m − 3)(2m + 7) = 0 5m = 3 OR 3 m = __ OR 5
0=0
7 __
x = −2 OR
(8c − 3)(c + 2) = 0
5m − 3 = 0 OR
245 − ____ = 0 2
(x + 10)(x + 2) = 0
8c2 + 13c − 6 = 0 8c − 3 = 0 OR
True
72 7 10 −__ + 29 −__ − 21 = 0 2 2 49 203 105 × ___ − ____ − 21 = 0 42 2
(2b + 3)(2b + 5) = 0
8c2
3 __
87 105 + ___ − ____ = 0 5 5 105 ____ 105 ____ − =0 5 5 0=0
10m2 + 29m − 21 = 0
√
4b2
()
32 3 10 __ + 29 __ − 21 = 0 5 5 2 87 9 10 × ____ + ___ − 21 = 0 5 25 5
2m + 7 = 0 2m = –7 7 m = −__ 2
5 x2 x Q. 40. __ + __ − __ = 0 3 2 6
(× 6)
2x2 + 3x − 5 = 0 (2x + 5)(x − 1) = 0 2x + 5 = 0 OR x − 1 = 0 2x = −5 OR x=1 5 x = −__ 2
Active Maths 2 (Strands 1–5): Ch 17 Solutions
5
3x2 ___
Q. 41.
5
6x2
11x − ____ − 1 = 0 10
(× 10)
Q. 3.
− 11x − 10 = 0
Q. 42.
2x − 5 = 0
3x = −2 OR
2x = 5
2 x = −__ OR 3
5 x = __ 2
1 2 ____ 17x __ 1 __ x − + =0 8
2
= 25
___
x=
(× 8)
4x − 1 = 0 OR
x−4=0
4x = 1 OR
x=4
1 __
Q. 4.
4
Exercise 17.2 x2 + 8x + 15________ =0
−b ± √b2 − 4ac x = _______________ 2a
a = 1, b = 8, c = 15 b2 − 4ac = (8)2 − 4(1)(15) = 64 − 60 = 4 __
x=
Q. 2.
−8 ± √ 4 _________ 2×1
−8 + 2 x = _______ OR 2
−8 − 2 x = _______ 2
−6 x = ___ 2
OR
−10 x = ____ 2
∴ x = −3
OR
x = −5
x2 + 7x + 10________ =0
−b ± √b2 − 4ac x = _______________ 2a a = 1, b = 7, c = 10 b2 − 4ac = (7)2 − 4(1)(10) = 9 __
x=
6
−7 ± √9 _________
2×1 −7 + 3 x = _______ OR 2
−7 − 3 x = _______ 2
∴ x = −2
x = −5
OR
2a
= 1 + 24
(4x − 1)(x − 4) = 0
Q. 1.
2
b2 − 4ac = (1)2 − 4(1)(−6)
4x2 − 17x + 4 = 0
x=
−b ± √ b − 4ac _______________
a = 1, b = 1, c = −6
OR
2
________
x=
(3x + 2)(2x − 5) = 0 3x + 2 = 0
x2 + x − 6 = 0
Active Maths 2 (Strands 1–5): Ch 17 Solutions
−1 ± √ 25 __________
2×1 −1 + 5 x = _______ OR 2
−1 − 5 x = _______ 2
4 x = __ 2
OR
−6 x = ___ 2
∴x=2
OR
x = −3
2x2 − 13x +________ 20 = 0
−b ± √ b2 − 4ac x = _______________ 2a a = 2, b = −13, c = 20 b2 − 4ac = (−13)2 − 4(2)(20) = 169 − 160 =9 __
x=
−(−13) ± √9 _____________ 2×2
13 − 3 x = _______ 4 10 ___ OR x = 4 5 __ x=4 OR x = 2 Checking solutions
13 + 3 x = _______ 4 16 ___ x= 4
OR
2x2 − 13x + 20 = 0 2(4)2 − 13(4) + 20 = 0 32 − 52 + 20 = 0 52 − 52 = 0 0 = 0 True ∴ x = 4 is a solution 2x2 − 13x + 20 = 0 52 5 2 __ − 13 __ + 20 = 0 2 2
()
()
12_12 − 32_12 + 20 = 0 32_12 − 32_12 = 0
∴x=
5 __ 2
0 = 0 True is a solution.
Q. 5.
2x2 − 7x + 5________ =0
−b ± √ b2 − 4ac x = _______________ 2a a = 2, b = −7, c = 5 b2 − 4ac = (−7)2 − 4(2)(5) = 9 __
–(–7) ± √ 9 __________
7±3 ______
= 4 2(2) 7−3 7+3 x = ______ OR x = ______ 4 4 5 __ x= OR x = 1 2
x=
Q. 6.
4x2 − 17x +________ 13 = 0
−b ± √ b2 − 4ac x = _______________ 2a a = 4, b = −17, c = 13 b2 − 4ac = (−17)2 − 4(4)(13) = 289 − 208 = 81 x=
x=
2×7
−25 − 17 −25 + 17 x = _________ OR x = _________ 14 14 −8 −42 x = ___ OR x = ____ 14 14 4 x = −__ OR 7
3x2 − 4x − 7 = 0
________
x=
−b ± √ b − 4ac _______________ 2
2a
a = 3, b = −4, c = −7 = 16 + 84
17 − 9 x = _______ 8
26 x = ___ 8
OR
8 x = __ 8
OR
x=1
13 ___ 4
5x2 − 18x + 9 = 0
________
a = 5, b = −18, c = 9 b2 − 4ac = (−18)2 − 4(5)(9) = 324 − 180 = 144
x = −3
Q. 9. 3x2 = 4x + 7
2×4
−b ± √ b2 − 4ac x = _______________ 2a
____
−(−18) ± √ 144 x = _______________ 2×5 18 − 12 18 + 12 x = ________ OR x = ________ 10 10 30 6 OR x = ___ x = ___ 10 10 3 x=3 OR x = __ 5 Q. 8.
____
−25 ± √ 289 ____________
b2 − 4ac = (−4)2 − 4(3)(−7)
−(−17) ± √ 81 ______________
17 + 9 x = _______ OR 8
x= Q. 7.
___
a = 7, b = 25, c = 12 b2 − 4ac = (25)2 − 4(7)(12) = 625 − 336 = 289
7x2 + 25x + 12 = 0
________
−b ± √ b2 − 4ac x = _______________ 2a
= 100
____
x=
−(−4) ± √ 100 ______________ 2×3
4 + 10 x = _______ OR 6
4 − 10 x = _______ 6
14 x = ___ 6
OR
−6 x = ___ 6
7 x = __ 3
OR
x = −1
Q. 10. 4x2 = 4x + 8 ∴ 4x2 − 4x − 8 = 0
________
−b ± √ b2 − 4ac x = _______________ 2a a = 4, b = −4, c = −8 b2 − 4ac = (−4)2 − 4(4)(−8) = 16 + 128 = 144
____
x=
−(−4) ± √ 144 ______________ 2×4
4 + 12 x = _______ OR 8
4 − 12 x = _______ 8
16 x = ___ 8
OR
−8 x = ___ 8
x=2
OR
x = −1
Active Maths 2 (Strands 1–5): Ch 17 Solutions
7
___
Q. 11. 23x + 20 = −6x2
x=
6x2 + 23x + 20 = 0
2
2
___
2a
__
__
∴x=
−6 + 4√ 2 __________
___
2×6
Q. 2.
+ 7x = 4 + 7x − 4 = 0
x=
−b ± √ b − 4ac _______________
x2 + 8x + 5 = 0
= 64 − 20 = 44 ∴x=
___
−8 ± √44 __________
2 ×___1 −8 + √ 44 x = __________ OR 2
(–4)
___
x=
−8 −√ 44 _________ 2
Give answer to 3 decimal places
2
x = −0.683|3... OR x = −7.316|6...
2a
∴ x = −0.683
a = 2, b = 7, c = −4 Q. 3.
b2 − 4ac = (7)2 − 4(2)(−4)
x = −7.317
OR
y2 − 2y − 29 = 0
= 49 + 32
a = 1, b = −2, c = −29
= 81
b2 − 4ac = (−2)2 − 4(1)(−29)
___
−7 ± √81 x = __________ 2×2 −7 + 9 _______ 4
2 __ 4
1 __ 2
= 4 + 116
OR
x=
= 120
−7 − 9 _______
∴y=
4
OR
x=
OR
x = −4
Q. 1. x2 + 6x + 1 = 0
4
− 4ac =
____
____
=
2 – √ 120 _________ 2
Give answer to 2 d.p.
Q. 4.
a = 1, b = 6, c = 1 (6)2
____
−(−2) ± √ 120 ______________
2×1 2 ± √ 120 y = _________ OR 2
−16 ____
Exercise 17.3
− 4(1)(1)
y = 6.47|7... OR
y = −4.47|7
y = 6.48
y = −4.48
a = 1, b = −5, c = −28 b2 − 4ac = (−5)2 − 4(1)(−28) = 25 + 112 = 137
___
−6 ± √ 32 __________ 2×1
Active Maths 2 (Strands 1–5): Ch 17 Solutions
OR
x2 − 5x − 28 = 0
= 36 − 4 = 32
8
__
b2 − 4ac = (8)2 − 4(1)(5)
________
∴x=
2
a = 1, b = 8, c = 5
(×2)
2x2
b2
x=
x = −3 + 2√2 OR x = −3 − 2√ 2
2x2
x=
OR
2
__
−23 ± √49 ___________
−23 − 7 −23 + 7 x = ________ OR x = ________ 12 12 −30 −16 OR x = ____ x = ____ 12 12 −5 −4 OR x = ___ x = ___ 3 2
x=
__
−6 − 4√ 2 __________
Dividing by 2 gives
= 49
x=
__
= 4√ 2
= 529 − 480
Q. 12. x2 + x = 2 2
2
= √ 16 × √ 2
b2 − 4ac = (23)2 − 4(6)(20)
7 __
x=
OR
Note √ 32 = √ 16 × 2
−b ± √ b − 4ac _______________
a = 6, b = 23, c = 20
x=
−6 − √ 32 __________
_______
___
________
x=
___
−6 + √ 32 __________
∴x=
____
−(−5) ± √ 137 ______________ 2×1
____
x=
Q. 5.
____
____
5 + √ 137 _________
x=
OR
2
5 − √137 _________
x=
2
4
Give answer to 3 d.p.
x = 8.3|5... OR
x = −3.3|5...
x = 4.723|1... OR x = −2.223|1...
x = 8.4
x = −3.4
x = 4.723
OR
2x2 − 11x − 9 = 0
Q. 8.
x = −2.223
OR
4q2 − q − 13 = 0
a = 2, b = −11, c = −9
a = 4, b = −1, c = −13
b2
b2 − 4ac = (−1)2 − 4(4)(−13)
− 4ac =
(−11)2
− 4(2)(−9)
= 121 + 72
= 1 + 208
= 193
= 209
____
−(−11) ± √ 193 _______________
2×2 11 + √ 193 x = __________ OR 4 ____
∴q=
____
11 − √ 193 x = __________ 4
Give answer to 1 d.p.
x = 6.223|1... OR
x = −0.723|1...
x = 6.223
x = −0.723
OR
____
−(−1) ± √209 ______________
2×4 ____ 1 − √ 209 1 + √209 _________ _________ OR q = q= 8 8
____
Give answer to 3 d.p.
∴ q = 1.9|3... OR q = 1.9
3x2 − 10x + 4 = 0
Q. 9.
q = −1.6|8... q = −1.7
OR
5x2 + 4x − 5 = 0
a = 3, b = −10, c = 4
a = 5, b = 4, c = −5
b2 − 4ac = (−10)2 − 4(3)(4)
b2 − 4ac = (4)2 − 4(5)(−5)
∴x=
= 100 − 48
= 16 + 100
= 52
= 116
___
____
−(−10) ± √ 52 ______________
2×3 ___ 10 − √ 52 10 + √ 52 _________ _________ OR x = x= 6 6 Give answer in surd form ___
___
_______
√52 = √4 × 13 ___ __ = √4 × √ 13 ___
= 2√13
___
___
10 + 2√ 13 ∴ x = __________ OR 6
10 − 2√ 13 x = __________ 6
Dividing by 2 gives ___
x= Q. 7.
x=
OR
4
5 − √193 _________
Give answer to 1 d.p.
∴x=
Q. 6.
____
5 + √ 193 _________
5 + √ 13 ________ 3
∴x=
−4 ± √ 116 ___________
2×5 ____ −4 − √ 116 −4 + √ 116 ___________ ___________ OR x = x= 10 10 Give answer to 2 d.p. x = 0.67|7... OR
x = −1.47|7...
∴ x = 0.68
x = −1.48
x=
a = 8, b = −5, c = −11 b2 − 4ac = (−5)2 − 4(8)(−11) = 25 + 352 = 377
5 − √13 ________ 3
OR
Q. 10. 8x2 − 5x − 11 = 0
___
OR
____
____
∴x=
−(−5) ± √377 ______________
a = 2, b = −5, c = −21
2×8 ____ 5 − √377 5 + √ 377 _________ _________ OR x = x= 16 16
b2 − 4ac = (−5)2 − 4(2)(−21)
Give answer to 3 d.p.
2x2
− 5x − 21 = 0
= 25 + 168= 193 ____
−(−5) ± √193 ∴ x = ______________ 2×2
____
x = 1.526|0... OR x = −0.901|0... x = 1.526
OR x = −0.901
Active Maths 2 (Strands 1–5): Ch 17 Solutions
9
__
Q. 11.
9a2
− 8a − 24 = 0
∴x=
2 ×__2 __ −4 + √ 8 −4 − √ 8 _________ _________ x= OR x = 4 4
a = 9, b = −8, c = −24 b2 − 4ac = (−8)2 − 4(9)(−24)
∴a=
−4 ± √8 _________
= 64 + 864
Give answer in surd form
= 928
Note: √ 8 = √ 4 × 2
__
____
__
−(−8) ± √ 928 ______________
2×9 8 + √ 928 a = _________ OR 18 ____
__
= 2√ 2
____
__
8 − √928 a = _________ 18
a = 2.13|6... OR
a = −1.24|7...
a = 2.14
a = −1.25
OR
∴x=
−4 + 2√ 2 __________ 4
x= 4x2
−2 + √ 2 _________ 2
∴x=
−(−9) ± √21 ∴ x = _____________ 2×3 ___ ___ 9 − √ 21 9 + √21 ________ ________ OR x = x= 6 6
2×4 ___ −10 − √20 10 + √20 _________ ___________ OR x = x= 8 8 Give answer in surd form ___
__
__
= 2√ 5 ∴x=
−10 + 2√5 ___________
____
−5 + √ 5 _________
b = −0.673
Q. 14. 2x2 + 4x + 1 = 0 a = 2, b = 4, c = 1 − 4(2)(1)
= 16 − 8 = 8
10
4
__
OR
x=
−5 − √ 5 _________ 4
a = 1, b = −12, c = 14 b2 − 4ac = (−12)2 − 4(1)(14) = 144 − 56 = 88
b = 0.945|6... OR b = −0.672|9...
− 4ac =
8
Q. 16. x2 − 12x + 14 = 0
Give answer to 3 d.p.
(4)2
OR x =
__
x=
−(−3) ± √ 317 ∴ b = ______________ 2 × 11 ____ ____ 3 − √317 3 + √317 _________ _________ OR b = b= 22 22
8
__
−10 −2√5 __________
Dividing by 2 gives
= 9 + 308
OR
__
= √4 × √5
b2 − 4ac = (−3)2 − 4(11)(−7)
b = 0.946
______
Note: √ 20 = √ 4 × 5
__
a = 11, b = −3, c = −7
= 317
___
−10 ± √20 ___________ ___
Give answer to 1 d.p.
Q. 13. 11b2 − 3b − 7 = 0
2
= 100 − 80 = 20
x = 0.7
OR x =
b2 − 4ac = (10)2 − 4(4)(5)
___
OR
__
−2 − √ 2 _________
+ 10x + 5 = 0
= 81 − 60
x = 2.3
4
a = 4, b = 10, c = 5
b2 − 4ac = (−9)2 − 4(3)(5)
x = 0.7|3...
OR x =
__
a = 3, b = −9, c = 5
x = 2.2|6... OR
__
−4 − 2√2 __________
Dividing by 2 gives
Q. 15.
Q. 12. 3x2 − 9x + 5 = 0
= 21
__
= √4 × √2
Give answer to 2 d.p.
b2
______
Active Maths 2 (Strands 1–5): Ch 17 Solutions
∴x=
___
−(−12) ± √88 ______________
2___ ×1 12 + √88 x = _________ OR 2
___
x=
Give answer in surd form
12 − √ 88 _________ 2
___
_______
Note: √88 = √ 4 × 22
Give answer in surd form
___
__
___
___
___
x=
2
12 − 2√ 22 __________ 2
Dividing by 2 gives ___
∴ x = 6 + √ 22
___
x = 6 − √22
OR
Q. 17. 5x2 − 16x + 9 = 0 − 4ac =
(−16)2
− 4(5)(9)
= 256 − 180 = 76
__
∴x=
Give answer to 1 d.p. x = 2.5
OR
x = 0.7|2... x = 0.7
Q. 18. 15x2 − 21x + 1 = 0 a = 15, b = −21, c = 1 b2 − 4ac = (−21)2 − 4(15)(1) = 441 − 60 = 381
Dividing by 2 gives __
x=
Give answer to 2 d.p. OR
__
x=
OR
4
9x2
−1 − √5 _________ 4
=0
9x2 − 10x + 2 = 0 a = 9, b = −10, c = 2 = 100 − 72 = 28
___
−(−10) ± √ 28 x = ______________ 2× 9 ___ ___ 10 − √28 10 + √ 28 _________ _________ OR x = x= 18 18 Give answer in surd form ___
______
___
__
Note: √ 28 = √4 × 7
__
√28 = √4 × √7 __ = 2√7 __ __ 10 + 2√ 7 10 − 2√ 7 _________ _________ ∴x= OR x = 18
x = 5 + √7 ___________ 9
18
OR
__
x=
5 − √7 _______ 9
Q. 21. 3x = 20 − 8x2 8x2 + 3x − 20 = 0 a = 8, b = 3, c = −20
x = 0.04|9...
b2 − 4ac = (3)2 − 4(8)(−20)
x = 0.05
= 9 + 640 = 649
Q. 19. 4x2 = 1 − 2x
____
+ 2x − 1 = 0
a = 4, b = 2, c = −1 b2 − 4ac = (2)2 − 4(4)(−1) = 4 + 16 = 20
−1 + √ 5 _________
__
−(−21) ± √ 381 ∴ x = _______________ 2 × 15 ____ ____ 21 − √ 381 21 + √ 381 __________ __________ OR x = x= 30 30
∴ x = 1.35
8
Dividing by 2 gives
____
x = 1.35|0... OR
OR x =
8
___
∴ x = 2.4|7... OR
__
−2 − 2√ 5 __________
b2 − 4ac = (−10)2 − 4(9)(2)
−(−16) ± √ 76 ∴ x = ______________ 2×5 ___ ___ 16 − √ 76 16 + √ 76 _________ _________ OR x = x= 10 10
4x2
−2 + 2√5 __________
Q. 20. 2 − 10x +
a = 5, b = −16, c = 9 b2
= 2√5
___
OR x =
__
__
= 2√ 22 12 + 2√ 22 __________
__
Note √ 20 = √ 4 × √ 5
= √ 4 × √ 22
___
x=
−3 ± √ 649 ___________
2 ____ ×8 ____ −3 − √649 −3 + √ 649 ___________ ___________ OR x = x= 16 16 Give answer to 3 d.p. ∴ x = 1.404|7... OR x = −1.779|7...
−2 ± √ 20 ∴ x = 1.405 OR x = −1.780 ∴ x = __________ 2× 4 ___ ___ −2 − √ 20 −2 + √20 __________ __________ OR x = x= 8 8 Active Maths 2 (Strands 1–5): Ch 17 Solutions
11
Q. 22. 15x2 − 14x = 9
b2 − 4ac = (−2)2 − 4(5)(−11)
15x2 − 14x − 9 = 0
= 4 + 220
a = 15, b = −14, c = −9
= 224
b2
− 4ac =
(−14)2
− 4(15)(−9)
= 196 + 540 = 736
____
−(−14) ± √736 ∴ x = _______________ 2 × 15 ____ ____ 14 − √ 736 14 + √ 736 __________ __________ OR x = x= 30 30 Give answer in surd form
Note: √ 736 = √16 × 46 ___
___
= √ 16 × √46
x = −1.29|6...
∴ x = 1.70
x = −1.30
OR
a = 16, b = 40, c = 3
___
= 4√46
___
b2 − 4ac = (40)2 − 4(16)(3)
___
14 + 4√46 14 − 4√46 ∴ x = __________ OR x = __________ 30 ___ 30 ___ 7 − 2√ 46 7 + 2√46 x = _________ OR x = _________ 15 15
= 1,600 − 192 = 1,408 ______ –40 ± √1,408 _____________ x= 2 × 16 ______ ______ −40 − √1,408 −40 + √ 1,408 ______________ ______________ OR x = x= 32 32
Q. 23. 8x2 = 3 − 8x 8x2 + 8x − 3 = 0 a = 8, b = 8, c = −3
Give answer to 2 d.p.
b2 − 4ac = (8)2 − 4(8)(−3)
x = −0.07|7... OR x = −2.42|2...
= 64 + 96
∴ x = −0.08
= 160
____
x=
−8 ± √160 ___________
2____ ×8 ____ −8 − √160 −8 + √ 160 ___________ ___________ OR x = x= 16 16 ____
b2 − 4ac = (6)2 − 4(5)(−60) = 36 + 1,200
___
= √ 16 × √10 ___
= 4√ 10
___
∴x=
−8 + 4√ 10 ___________
OR x = 16 Dividing by 4 gives
x=
4
___
−8 −4√ 10 __________
___
−2 + √ 10 __________
OR x =
(× 15)
a = 5, b = 6, c = −60
________
Note: √ 160 = √ 16 × 10 ___
x = −2.42
OR
x2 2x Q. 26. __ + ___ − 4 = 0 5 3 5x2 + 6x − 60 = 0
Give answer as a surd
16
= 1,236 ______ −6 ± √1,236 _____________ ∴x= ______ 2 × 5 ______ −6 − √ 1,236 −6 + √ 1,236 _____________ _____________ OR x = x= 10 10
___
−2 − √10 __________ 4
Q. 24. 5x2 = 2x + 11 5x2 − 2x − 11 = 0 a = 5, b = −2, c = −11
12
x = 1.69|6... OR
3 Q. 25. 2x2 + 5x + __ = 0 (× 8) 8 16x2 + 40x + 3 = 0
________
____
____
−(−2) ± √224 ∴ x = ______________ 2×5 ____ ____ 2 − √ 224 2 + √224 _________ _________ OR x = x= 10 10 Give answer to 2 d.p.
Active Maths 2 (Strands 1–5): Ch 17 Solutions
Give answer to 3 d.p. x = 2.915|6... OR x = −4.115|6... x = 2.916
OR
x = −4.116
3 4 1 (× 90) Q. 27. __x2 = __ x + __ 5 2 9 40x2 = 135x + 18
Exercise 17.4 Q. 1.
40x2 − 135x − 18 = 0
Solve x2 + 9x + 20 = 0
a = 40, b = −135, c = −18
(x + 4)(x + 5) = 0
b2
x+4=0
− 4ac =
(−135)2
− 4(40)(−18)
OR
2)2
3)2
Q. 28. (x +
− 2(2x −
x = −0.13
(y + 1)2 + 9(y + 1) + 20 = 0
Q. 2.
+ 4x + 4 −
2[4x2
− 12x + 9] = 10
+ 28x − 24 = 0
Q. 3.
b2 − 4ac = (−28)2 − 4(7)(24)
−(–28) ± √ 112 ∴ x = ______________ 2×7 ____ ____ 28 − √ 112 28 + √112 __________ __________ OR x = x= 14 14
__
Q. 4.
__
= 4√ 7 __
__
28 + 4√ 7 28 − 4√ 7 ∴ x = _________ OR x = _________ 14 14 Dividing by 2 gives __
7
OR
x = −4 OR
x=8
∴ 4t = −4 OR
4t = 8
t = −1 OR
t=2
Solve x2 − 2x − 3 = 0
__
x=
14 − 2√7 _________ 7
OR
x−3=0
x = −1 OR
x=3
(t + 1)2 − 2(t + 1) − 3 = 0
_______
= √ 16 × √ 7
x=
x−8=0
Use this to solve
Give answer as surd.
14 + 2√ 7 _________
OR
x+1=0
____
___
Solve x2 − 4x − 32 = 0
(x + 1)(x − 3) = 0
= 784 − 672
Note: √112 = √ 16 × 7
y = −6
(4t)2 − 4(4t) − 32 = 0
(× −1)
a = 7, b = −28, c = 24
____
y = −5 OR
Use this to solve
7x2 − 28x + 24 = 0
= 112
y + 1 = −5
x+4=0
= 10
x2 + 4x + 4 − 8x2 + 24x − 18 − 10 = 0 −7x2
∴ y + 1 = −4 OR
(x + 4)(x − 8) = 0
(x + 2)(x + 2) − 2(2x − 3)(2x − 3) = 10 x2
x = −5
Use this to solve
Give answer to 2 d.p. x = 3.50
x+5=0
x = −4 OR
= 21,105_______ −(−135) ± √ 21,105 x = ___________________ _______2 × 40 _______ 21,105 135 − 135 + √ √21,105 x = ______________ OR x = ______________ 80 80 ∴ x = 3.50|3... OR x = −0.12|8...
OR
∴ t + 1 = −1 OR
t+1=3
t = −2 OR
t=2
(i) Solve x2 − 2x − 15 = 0 (x + 3)(x − 5) = 0 x+3=0
OR
x−5=0
x = −3 OR
x=5
(ii) Hence, solve (3a − 1)2 − 2(3a − 1) − 15 = 0 3a − 1 = −3 OR
3a − 1 = 5
3a = −2 OR
3a = 6
2 a = −__ 3
OR
a=2
Active Maths 2 (Strands 1–5): Ch 17 Solutions
13
Q. 5.
Solve 2x2 + 7x − 4 = 0
Solve x2 + 2x − 24 = 0
Q. 6.
(2x − 1)(x + 4) = 0
(x − 4)(x + 6) = 0
2x − 1 = 0 OR
x − 4 = 0 OR
x+4=0
2x = 1 OR 1 x = __ 2
x = −4
∴x=4
(
)
24 − 2(2y + 2) − (2y + 2)2 = 0
)
12 1 2 2p − __ + 7 2p − __ − 4 = 0 2 2 1 __ 1 1 __ ∴ 2p − = OR 2p − __ = −4 2 2 2 2p = 1 OR p= Q. 7.
1 __ 2
i.e. × −1 and rearrange order (2y + 2)2 + 2(2y + 2) − 24 = 0
2p = −3
2
7 __
p=−
OR
∴ 2y + 2 = 4 OR
1 __
4
OR
2y = −8
y=1
OR
y = −4
(i) Solve 2x2 − 9x − 18 = 0 2x + 3 = 0
OR
x−6=0
2x = −3 OR
x=6
3 x = −__ 2 (ii) Hence, solve 2(2a2 − 2)2 − 9(2a2 − 2) − 18 = 0 −3 ∴ 2a2 – 2 = ___ 2 1 __ 2 2a = 2 1 2 a = __ 4 __ 1 ∴ a = ± __ 4 1 __ a=± 2 1 __ 1 __ ∴a= ,− ,2 2 2
√
OR 2a2 − 2 = 6 OR
2a2 = 8
OR
a2 = 4 __
OR
a = ±√4
OR
a = ±2
OR
−2
Solve x2 − 6x − 16 = 0 (x + 2)(x − 8) = 0 x+2=0
OR
x−8=0
x = −2 OR
x=8
Hence, solve (3q2 − 5q)2 − 6(3q2 − 5q) − 16 = 0 ∴ 3q2 − 5q = −2
14
OR
3q2 − 5q = 8
3q2 − 5q + 2 = 0
OR
3q2 − 5q − 8 = 0
(3q − 2)(q − 1) = 0
OR
(3q − 8)(q + 1) = 0
Active Maths 2 (Strands 1–5): Ch 17 Solutions
2y + 2 = −6
2y = 2
(2x + 3)(x − 6) = 0
Q. 8.
x = −6
OR
Hence, solve
Hence, solve
(
x+6=0
3q – 2 = 0
OR
q − 1 = 0 OR
3q − 8 = 0 OR
q+1=0
3q = 2 OR 2 __ q= 3 8 2 __ ∴ q = , 1, __, −1 3 3
q = 1 OR
3q = 8 OR 8 q = __ 3
q = −1
OR
Q. 9. Solve to 2 d.p. x2 − 2x − 7 = 0 a = 1, b = −2, c = −7 b2 − 4ac = (−2)2 − 4(1)(−7) = 4 + 28 = 32 Using the quadratic formula: ________
−b ± √b2 − 4ac x = _______________ 2a ___ 32 −(−2) ± √ gives x = _____________ 2×1 ___ ___ 2 − √ 32 2 + √ 32 ________ ________ OR x = ∴x= 2 2 x = 3.82|8...
OR
x = −1.82|8...
x = 3.83
OR
x = −1.83
b2 − 4ac = (−2)2 − 4(5)(−15) = 4 + 300
____
2 − √ 304 x = _________ 10
x = 1.9|4... OR
x = −1.5|4...
x = 1.9
x = −1.5
OR
(ii) Hence, solve
(
)
OR
2p = 3.17
p = 4.415 OR
p = 1.585
−3 × − 8 = 249 −3 −8 = −119
3x(4x − 1) − 2(4x − 1) = 0 (3x − 2)(4x − 1) = 0 3x − 2 = 0 OR
4x − 1 = 0
3x = 2 OR 2 x = __ OR 3
4x = 1 1 x = __ 4
Hence, solve
(
)
2 a a 5 __ + 1 − 2 __ + 1 − 15 = 0 2 2 a a ∴ __ + 1 = 1.9 OR __ + 1 = −1.5 2 2 a a __ = 0.9 OR __ = −2.5 2 2
a = 1.8
2p = 8.83
2p − 5 = −1.83
12x2 − 3x − 8x + 2 = 0
____
2×5
2 + √304 x = _________ OR 10
OR
∴ 12x2 − 11x + 2 = 0
−(−2) ± √ 304 ______________ ____
∴ 2p − 5 = 3.83
Factors of 24 that add to give –11:
a = 5, b = −2, c = −15
∴x=
(2p − 5)2 − 2(2p − 5) − 7 = 0
Q. 11. Solve 12x2 − 11x + 2 = 0
Q. 10. (i) Solve to 1 decimal place: 5x2 − 2x − 15 = 0
= 304
Hence, solve
OR
a = −5
12(3y2 + y)2 − 11(3y2 + y) + 2 = 0 2 1 ∴ 3y2 + y = __ OR 3y2 + y = __ 4 3 2 __ 2 Solving 3y + y = (× 3) 3 9y2 + 3y = 2 9y2 + 3y − 2 = 0
Active Maths 2 (Strands 1–5): Ch 17 Solutions
15
Q. 6. Pair of roots 8, 0
(3y − 1)(3y + 2) = 0 3y − 1 = 0 OR 3y = 1 OR 1 y = __ OR 3 Solving 3y2 + y = 12y2 + 4y = 1
1 __ 4
3y = −2 2 y = −__ 3
Q. 7. Pair of roots −5, −4 x2 − (−5 − 4)x + (−5 × −4) = 0 x2 + 9x + 20 = 0 Q. 8. Pair of roots 0, −6
(6y − 1)(2y + 1) = 0 6y − 1 = 0 OR
∴ x2 − 8x = 0
(× 4)
12y2 + 4y − 1 = 0
x2 − (0 − 6)x + (0 × −6) = 0
2y + 1 = 0
6y = 1 OR 1 y = __ OR 6 1 __ 2 1 1 __ ∴ y = , − , __, −__ 3 3 6 2
2y = −1 1 y = −__ 2
Exercise 17.5 Q. 1.
x2 − (8 + 0)x + (8 × 0) = 0
3y + 2 = 0
x2 + 6x = 0 Q. 9. Pair of roots ±5 x = ±5 x2 = 25 x2 − 25 = 0
1 2 Q. 10. Pair of roots −__, __ 3 7 1 2 x = −__ OR x = __ 7 3
Pair of roots 1, 2 x2 −
3x = −1
of Product x+( =0 ( Sum roots ) of roots )
3x + 1 = 0 OR
21x2 − 6x + 7x − 2 = 0 21x2 + x − 2 = 0
Pair of roots 5, 6
of Product x+( =0 ( Sum roots ) of roots )
∴ x2 − (5 + 6)x + (5 × 6) = 0
Q. 11. Roots of x2 + px + q = 0 are 3 and −2 x2 − (3 − 2)x + (3 × − 2) = 0
x2 − 11x + 30 = 0 Q. 3.
x2 − x − 6 = 0
Pair of roots 4, −2 x2 −
of Product x+( =0 ( Sum roots ) of roots )
∴ x2 − (4 − 2)x + (4 × −2) = 0
∴ p = −1 and q = −6 Q. 12. Roots of x2 + bx + c = 0 are 0 and −4
x2 − 2x − 8 = 0 Q. 4.
Pair of roots 7, −5 x2 − (7 − 5)x + (7 × − 5) = 0 ∴ x2 − 2x − 35 = 0
Q. 5.
Pair of roots −11, 11 x2 − (−11 + 11)x + (−11 × 11) = 0 ∴ x2 − 121 = 0
16
7x − 2 = 0
3x(7x − 2) + 1(7x − 2) = 0
x2 − 3x + 2 = 0
x2 −
7x = 2
∴ (3x + 1)(7x − 2) = 0
∴ x2 − (1 + 2)x + (1 × 2) = 0
Q. 2.
OR
Active Maths 2 (Strands 1–5): Ch 17 Solutions
x = 0 and x = −4 x = 0 and x + 4 = 0 ∴ x(x + 4) = 0 x2 + 4x = 0 ∴ b = 4 and c = 0
Q. 13. Given roots the same:
Q. 4.
x2 − (a + a)x + (a × a) = 0 i.e.
x2
a2
− 2ax +
Area of rectangle = length × width ∴ x(x + 2) + (2x + 3)(x + 1) + x(x) = 189 x2 + 2x + 2x2 + 2x + 3x + 3 + x2 = 189
=0
but x2 − 8x + c = 0
4x2 + 7x − 186 = 0
∴ 2a = 8 hence a = 4
4x2 − 24x + 31x − 186 = 0
∴c=4×4
4x(x − 6) + 31(x − 6) = 0 (4x + 31) (x − 6) = 0
c = 16
4x + 31 = 0
Exercise 17.6 x2 + 3x = 88 Q. 5.
(x + 11)(x − 8) = 0 OR
x−8=0
x = −11 OR
x=8
x=6
Perimeter of rectangle = 160 m (i) P = 2 × length + 2 × width If x = length then 160 = 2x + 2 × width
Since x is a positive number, the number is 8.
160 − 2x = 2 × width
160 − 2x _________
x = 1st number
= width 2 ∴ width = 80 − x
x + 2 = 2nd number x(x + 2) = 399
(ii) Area of rectangle = 1536 m2
x2 + 2x − 399 = 0
Area of rectangle = l × w
(x − 19)(x + 21) = 0
∴ x(80 − x) = 1,536
x − 19 = 0
80x − x2 = 1,536
OR
x + 21 = 0
x = 19 OR
x = −21
If x = 19 then x + 2 = 21
(× −1)
x2 − 80x = −1,536 i.e. x2 − 80x + 1,536 = 0
19 × 21 = 399 as required
(x − 32)(x − 48) = 0
x = −21 rejected as −21 ∉ N
∴ x − 32 = 0
∴ The numbers are 19 and 21 Q. 3.
4x = −31 OR
∴x=6
x2 + 3x – 88 = 0
Q. 2.
x−6=0
31 x = −___ 4 31 ___ x = − rejected as length is positive 4
Q. 1. x = positive number
∴ x + 11 = 0
OR
OR
x − 48 = 0
x = 32 OR
x = 48
If x = 32 then length = 32
Let x = the number
and width = 80 − 32
x2 + 15 = 8x x2 − 8x + 15 = 0
= 48
(x − 3)(x − 5) = 0
If x = 48 then length = 48
x − 3 = 0 OR
x−5=0
x = 3 OR
x=5
The number could be 3 OR
and width = 80 − 48 = 32 5
∴ The dimensions of the rectangle are 32 m and 48 m.
Active Maths 2 (Strands 1–5): Ch 17 Solutions
17
Q. 6.
(i) Area of rectangle = l × w
Area = (x + 5)(16 − 2x)
∴ x(x + 5) = 14
= 16x − 2x2 + 80 − 10x
x2 + 5x − 14 = 0
= −2x2 + 6x + 80
(x − 2)(x + 7) = 0 x − 2 = 0 OR
(ii)
x+7=0
x = 2 OR
x + 5 + 2x x
x = −7
x
16 – 2x + 2x
x = −7 rejected as length is positive
x
∴ x = 2 cm (ii) Area of parallelogram = b × h
Garden + Path (total area covered)
∴ (2x − 5)(x + 3) = 21
Area = (3x + 5)(16)
2x2 + 6x − 5x − 15 − 21 = 0
= 48x + 80
2x2 + x − 36 = 0
Area of path only
(2x + 9)(x − 4) = 0 2x + 9 = 0 x=−
9 __ 2
OR
x−4=0
OR
x=4
= 48x + 80 − (−2x2 + 6x + 80) = 48x + 80 + 2x2 − 6x − 80 = 2x2 + 42x
9 x = −__ rejected as length is positive 2
(iii) Given area of path = 67.5 m 2x2 + 42x = 67.5
∴ x = 4 cm
2x2 + 42x − 67.5 = 0
1 (iii) Area of triangle = __ bh 2 1 ∴ __(4x + 3)(2x − 7) = 34.5 (×2) 2 (4x + 3)(2x − 7) = 69
a = 2, b = 42, c = −67.5 b2 − 4ac = (42)2 − 4(2)(−67.5) = 2,304 ______
8x2 − 28x + 6x − 21 − 69 = 0 8x2 − 22x − 90 = 0 4x2
x=
(÷2)
4x (x − 5) + 9 (x − 5)=0 OR
x–5=0
Q. 8.
Garden (i)
−42 ± 48 = _________ 4
x = 1.5
∴ x = 1.5 m
9 x = −__ OR x=5 4 9 x = −__ rejected as length is positive 4 ∴ x = 5 cm
Q. 7.
4
x = −22.5 rejected, as length is positive
4x2 − 20x + 9x − 45 = 0 (4x + 9)(x − 5) = 0
−42 ± √2,304 ______________
x = −22.5 OR
− 11x − 45 = 0
4x + 9 = 0
x
(i) g = –2t2 + 20t + 7 In 1997 t = 7 ∴ g = −2(7)2 + 20(7) + 7 g = 49 49,000 games sold in 1997 (ii) 1990 t = 0
x+5
g = −2(0)2 + 20(0) + 7 = 7 1991 t = 1 16 – 2x
18
Active Maths 2 (Strands 1–5): Ch 17 Solutions
g = −2(1)2 + 20(1) + 7 = 25
1992 t = 2
0 = (n + 1)(n − 4)
g = −2(2)2 + 20(2) + 7 = 39
n+1=0
1993 t = 3
OR
n−4=0
n = −1 OR
n=4
g = −2(3)2 + 20(3) + 7 = 49
Since n ≥ 0, n = −1 rejected.
1994 t = 4
∴n=4
g = −2(4)2 + 20(4) + 7 = 55
Q. 10.
1995 t = 5 −2(5)2
g=
(i) Perimeter = 46 m Length = x
+ 20(5) + 7 = 57
Perimeter = 2l + 2w
1996 t = 6 g=
−2(6)2
∴ 2x + 2w = 46
+ 20(6) + 7 = 55
2w = 46 − 2x
1997 g = 49
w = 23 − x
1998 g = 39
width = 23 − x
1999 g = 25 1990 to 1994 = 175,000 games
(ii)
x–8 23 – x
1995 to 1999 = 225,000 games ∴ 1995 to 1999 more games were sold. (iii) 25,000 games sold
x–8
∴ −2t2 + 20t + 7 = 25 −2t2 + 20t − 18 = 0 2t2 t2
− 20t + 18 = 0
(÷ 2)
= 3x − 16 width = 23 − x + x − 8 + x − 8
∴ t − 1 = 0 OR
t−9=0
t = 1 OR
t=9
25,000 games were sold in 1991 and 1999 (iv) After 2000 the number of games sold gives a negative answer. e.g. for 2001 t = 11 + 20(11) + 7
Q. 9. Sold n bars for (n + 1) cents. Solve for money taken each day: n(n + 1) = 2(n + 1)(n − 2) n2 + n = 2[n2 − 2n + n − 2] n2 + n = 2n2 − 2n − 4 0=
=x+7 Total area = (3x − 16)(x + 7) = 3x2 + 5x − 112 Area of path = 140 m2 ∴ 3x2 + 5x − 112 − x(23 − x) = 140 3x2 + 5x − 112 − 23x + x2 = 140 4x2 − 18x − 252 = 0
g = −15 i.e. −15,000 games and thus the formula is no longer valid
n2
x–8
length = x + x − 8 + x − 8
(t − 1)(t − 9) = 0
∴g=
x–8
Total area of path and pool:
− 10t + 9 = 0
–2(11)2
x
2x2 − 9x − 126 = 0 (2x − 21)(x + 6) = 0 2x − 21 = 0 OR 2x = 21 OR
x+6=0
x = −6 ← reject
x = 10.5 Dimensions of pool = 10.5 and 23 − 10.5 = 12.5 Length = 10.5 m, width = 12.5 m
− 3n − 4 Active Maths 2 (Strands 1–5): Ch 17 Solutions
19
Q. 11. C(x) = 9 + 16x − 0.5x2
Since t ≥ 0 ∴ t = 4 seconds.
C = cost in euros
It will take 4 seconds to hit the ground.
x = no. of chairs produced (i) If x = 10
Q. 13. N(t) = 16t2 − 200t + 625
C = 9 + 16(10) − 0.5(10)2
(i) When t = 0
C = 119
N = 16(0)2 − 200(0) + 625
costs €119
= 625 625 spores present
(ii) 9 + 16x −0.5x2 = 135 −0.5x2 + 16x −126 = 0 x2
(ii) At t = 3
− 32x + 252 = 0
N = 16(3)2 − 200(3) + 625
(x − 14)(x − 18) x = 14 OR
= 169
x = 18
169 spores after 3 minutes
Answer: 14 chairs
(iii) 625 spores present initially
(iii) If x = 15
84% of 625 = 525 spores killed
C = 9 + 16(15) −
0.5(15)2
∴ 100 spores left
C = €136.50
∴ 16t2 − 200t + 625 = 100
Chairs sold at €30 each
16t2 − 200t + 525 = 0
∴ Profit = €30 × 15 − €136.50
a = 16, b = −200, c = 525
= €313.50
b2 − 4ac = (−200)2 − 4(16)(525) = 6,400
Q. 12. h(t) = −5t2 + 18t + 8
Using the quadratic formula: ______ −(−200) ± √6,400 t = _________________ 2 × 16 200 − 80 200 + 80 t = _________ OR t = _________ 32 32
(i) When t = 0 h = −5(0)2 + 18(0) + 8 h=8 Object fired from height of 8 m
t = 8_34
(ii) Average speed in 1st second h = 21
(iv) The laboratory technician may have recommended not releasing the fungicide for commercial use as 3_43 minutes may be too long to wait to kill 84% of the spores initially present.
Distance 21 − 8 Average Speed: ________ = _______ 1 time ∴ Average speed = 13 m/s (iii) When h = 0 −5t2 + 18t + 8 = 0 Q. 14.
(i) Area of field
5t2 − 20t + 2t − 8 = 0
= (8x + 6)(13x + 11)
5t(t − 4) + 2(t − 4) = 0
= 104x2 + 88x + 78x + 66
(5t + 2)(t − 4) = 0
= 104x2 + 166x + 66
5t + 2 = 0 t=−
20
t = 3_34
∴ The shortest time is 3_34 minutes
when t = 1, h = −5(1)2 + 18(1) + 8
5t2 − 18t − 8 = 0
OR
2 __ 5
OR
t−4=0
OR
t=4
Active Maths 2 (Strands 1–5): Ch 17 Solutions
b2 − 4ac = (−9)2 − 4(2)(−1)
(ii) Area covered by barn = x(x + 5) =
x2
= 81 + 8 = 89
+ 5x
Using the quadratic formula: ___
(iii) Area unbuilt = 1,476
m2
x=
∴ 104x2 + 166x + 66 − (x2 + 5x) = 1,476 103x2 + 161x − 1,410 = 0
−(−9) ± √89 _____________
2___ ×2 9 + √ 89 x = ________ OR 4
___
x=
9 − √ 89 ________ 4
a = 103, b = 161, c = −1,410
x = 4.608... OR x = −0.108...
b2 − 4ac = (161)2 − 4(103)(−1,410)
Since x ≥ 0 reject x = −0.108 x = 4.608...m
= 606,841 Using the quadratic formula: ________ −161 ± √ 606,841 x = _________________ 2 × 103 −161 − 779 −161 + 779 x = ____________ OR x = ____________ 206 206 x = 3 OR
x = −4.56...
as x > 0, x = −4.56... rejected ∴x=3 Dimensions of the field for x = 3 are:
∴ x = 460.8... cm The ball landed 461 cm from the batter (to the nearest cm). (iv) The batter wouldn’t have been pleased to hit the ball such a short distance of only 461 cm. Q. 16. Using Pythagoras’ Theorem: (i) (6x)2 + (3x − 7)2 = (8x − 21)2 36x2 + 9x2 − 42x + 49 = 64x2 − 336x + 441
8x + 6 = 8(3) + 6 = 30 m
45x2 − 42x + 49
and 13x + 11 = 13(3) + 11
= 64x2 − 336x + 441
= 50 m Dimensions of field: 50 m by 30 m
b2 − 4ac = (−294)2 − 4(19)(392)
y = height above ground (m)
= 56,644
x = horizontal distance (m)
Using the quadratic formula: _______ −(−294) ± √ 56,644 x = ___________________ 2 _______ × 19 56,644 294 + √ x = ______________ 38
(i) When x = 0 y = −2(0)2 + 9(0) + 1 y=1 Height of ball: 1 m (ii) When x = 2 y = −2(2)2 + 9(2) + 1 y = 11 Height of ball: 11 m (iii) When y = 0 (i.e. ball landed) 2x2 − 9x − 1 = 0 a = 2, b = −9, c = −1
0 = 19x2 − 294x + 392 a = 19, b = −294, c = 392
Q. 15. y = −2x2 + 9x + 1
⇒ −2x2 + 9x + 1 = 0
(× 100)
OR _______ 294 − √56,644 x = ______________ 38 28 x = 14 OR x = ___ 19 28 If x = ___ then 19 28 11 3x − 7 = 3 × ___ − 7 = −2__ 19 19
(
)
which is invalid, as length cannot 28 be negative ∴ x = __ is rejected 19 ∴ x = 14 Active Maths 2 (Strands 1–5): Ch 17 Solutions
21
(ii) 2x2 − 5x + 9 = 0
(ii) Two shorter sides (7x − 2)2 + (2x − 8)2
a = 2, b = −5, c = 9
= 49x2 − 28x + 4 + 4x2 − 32x + 64
b2 − 4ac = (−5)2 − 4(2)(9)
= 53x2 − 60x + 68
= 25 − 72
Longest side (hypotenuse)
= −47
(6x + 2)2 = 36x2 + 24x + 4
Since the discriminant b2 − 4ac is negative, the equation has no real solutions, i.e. we cannot evaluate _____ √ −47 .
If it is a right-angled triangle 53x2 − 60x + 68 = 36x2 + 24x + 4 17x2 − 84x + 64 = 0
(iii) A possible correction to the equation is to change +9 to −9,
a = 17, b = −84, c = 64 b2 − 4ac = (−84)2 − 4(17)(64)
so that b2 − 4ac = 25 + 72
= 2,704 Using the quadratic formula ______ −(−84) ± √ 2,704 x = ________________ ______ 2 × 17 ______ 2,704 84 − √ 2,704 84 + √ ____________ ____________ OR x = x= 34 34 16 ___ x = 4 OR x = 17
= 97 which is positive. Q. 18.
27x
( )
(27x)2 + (36x)2 = 602 729x2 + 1,296x2 = 3,600 2,025x2 = 3,600 3,600 x2 = ______ 2,025 ______ 3,600 x = ______ 2,025 60 x = ___ 45
∴ Abdul has indeed made a mistake.
√
___
4 ± √ 76 ________
6 ________ −b ± √ b2 − 4ac x = _______________ 2a ∴ 2a = 6 ⇒ a = 3
x = 1_13 hours x = 1 hour 20 mins
−b = 4 ⇒ b = −4
Started at 08:50 then 60 km apart after 1 hour 20 mins
b2 − 4ac = 76 ∴
(−4)2
− 4(3)(c) = 76 16 − 12c = 76 −12c = 60 c = −5
∴ time = 10:10 9x2 5x Q. 19. y = −___ + ___ + 11 20 2 y = height above sea level (m)
The quadratic equation of the form ax2
+ bx + c = 0
where a = 3, b = −4, c = 5 is 3x2 − 4x − 5 = 0
22
E
Where x = time in hours
2x − 8 = 2(4) − 8 = 0 16 16 2 If x = ___ then 2 ___ − 8 = −6__ 17 17 17 We cannot have a negative length side or a side of length zero.
(i) x =
60 km
36x
If x = 4, then one of the sides
Q. 17.
N
Active Maths 2 (Strands 1–5): Ch 17 Solutions
x = horizontal distance from cliff face (m) (i) When x = 0 5 −9 y = ___(0)2 + __(0) + 11 20 2 Pebble is 11 m high
(ii) When x = 3 5 −9 y = ___(3)2 + __(3) + 11 20 2 9 y = 14__ 20
9 Height of pebble is 14__ 20 m (or 14.45 m)
(iii) When y = 0 5 −9 2 __ ___ x + x + 11 = 0 20
(× −20)
2
9x2 − 50x − 220 = 0 a = 9, b = −50, c = −220 − 4(9)(−220) = 10,420 b2 − 4ac = (−50)2 _______ −(−50) ± √10,420 ∴ x = _________________ 2×9 _______ _______ 10,420 50 − √ 10,420 50 + √ _____________ _____________ OR x = x= 18 18 x = 8.44|88... OR
x = −2.8932...
as x > 0 reject x = −2.8932... ∴ x = 8.45 to 2 d.p. The pebble is 8.45 m (to two decimal places) from the cliff face. Q. 20. d = 0.0058v2 + 0.20v d = stopping distance (m) v = speed (km/hr) (i) v = 70 km/hr d = 0.0058(70)2 + 0.20(70) d = 42.42 Stopping distance = 42.42 m (ii) If d = 100 m 0.0058v2 + 0.20v = 100
(× 10,000)
58v2 + 2,000v − 1,000,000 = 0
(÷ 2)
29v2 + 1,000v − 500,000 = 0 a = 29, b = 1,000, c = −500,000 b2 − 4ac = (1,000)2 − 4(29)(−500,000) = 59,000,000 Using the quadratic formula:
___________
v=
−1,000 ± √ 59,000,000 _____________________ 2 × 29
v = 115.192... OR
v = −149.674...
Since v ≥ 0, v = −149.67... rejected The speed of the car was 115 km/hr (to nearest km/hr). Active Maths 2 (Strands 1–5): Ch 17 Solutions
23
Q. 21.
(i)
(ii) If R = €3,000 1 (× −2) 80x − __x2 = 3,000 2 2 −160x + x = −6,000
y x
x
x
x2 − 160x + 6,000 = 0
y
(x − 60)(x − 100) = 0
y + y + x + x + x = 200
∴ x − 60 = 0 OR
2y + 3x = 200
x = 60 OR
2y = 200 − 3x
(
(iii) c(x) = 10x + 50 where c = cost
)
If x = 25 then c = 10 × 25 + 50 c = 300
200x − 3x2 = __________ 4
Cost is €300 to produce 25 units
(iii) Area of field = 833_13 m2 200x − 3x2 ∴ __________ = 833_13 4 10,000 200x − 3x2 = _______ 3 600x − 9x2
9x2
(iv) If c = €750 (× 4)
then 10x + 50 = 750 10x = 700
(× 3)
x = 70
= 10,000
∴ 70 units manufactured
− 600x + 10,000 = 0
(v) Profit = sales revenue − cost
9x2 − 300x − 300x + 10,000 = 0
If profit is €1,950 then 1 80x − __x2 − (10x + 50) = 1,950 2 1 2 __ − x + 70x − 50 − 1,950 = 0 2 1 2 __ − x + 70x − 2,000 = 0 (×−2) 2
3x(3x − 100) − 100(3x − 100) = 0 (3x − 100)(3x − 100) = 0 ∴ 3x − 100 = 0 3x = 100 x = 33_13 _ 1
If x = 333 and y = then y =
∴ y = 50
2
x2 − 140x + 4,000 = 0
200 − 3x _________
( )
200 − 3 33_13 ____________
(x − 40)(x − 100) = 0
2
1 The value of x is 33__ m and the 3 value of y is 55 m
∴ x = 40 OR
R = 80(50) −
Q. 23. h = 22 + 60t − 10t2
1 __
(50)2
2 R = 4,000 − 1,250 R = 2,750 Revenue of €2,750
24
x = 100
40 units must be made
1 Q. 22. R(x) = 80x − __ x2 2 x = no. of furniture units (i) When x = 50
x = 100
60 units must be sold
200 − 3x y = _________ 2 (ii) Area of one of the fields y 200 − 3x 1 x × __ = x × __ × _________ 2 2 2
x − 100 = 0
Active Maths 2 (Strands 1–5): Ch 17 Solutions
t = time in seconds h = height in metres (i) When h = 0 22 + 60t − 10t2 = 0
(×−1)
10t2
(÷ 2)
− 60t − 22 = 0
5t2 − 30t − 11 = 0 a = 5, b = −30, c = −11
b2 − 4ac = (−30)2 − 4(5)(−11) = 900 + 220
i.e. h = 22 + 60(3) − 10(3)2
= 1,120 Using the quadratic formula ______ −(−30) ± √ 1,120 t = ________________ 2×5 ______ ______ 1,120 1,120 30 − 30 + √ √ t = ____________ OR t = ____________ 10 10 t = 6.346... OR
The maximum height occurs at t = 3 seconds
t = −0.346...
t = 6.3 to 1 d.p. The cannonball hits the ground after 6.3 seconds to 1 d.p. (ii) When t = 0 h = 22 + 60(0) − 10(0)2 h = 22 The cannonball was fired from 22 m (iii)
= 22 + 180 − 90 = 112 The maximum height the cannonball reaches is 112 m ∴ 120 m is not possible Alternative solution: Using a table t 0 1 2 3 4 5 6 h 22 72 102 112 102 72 22 From the table of values one can see that after 3 seconds the cannonball’s height starts to reduce from its maximum of 112 m Algebraically, 22 + 60t − 10t2 = 120 does not have a real solution
height
3 time
–0.346
6.346
Revision Exercises Q. 1. (a)
(i) Solve x2 + x − 20 = 0 (x − 4)(x + 5) = 0 x = 4 OR
x = −5
(ii) x2 + 3x − 70 = 0 (x − 7)(x + 10) = 0 x = 7 OR (iii)
x2
x = −10
− 25 = 0
x2 = 25
___
x = ±√ 25 x = ±5
(iv) x2 − 7x = 0 x(x − 7) = 0 ∴ x = 0 OR
x=7 Active Maths 2 (Strands 1–5): Ch 17 Solutions
25
(b) Using quadratic formula ________ −b ± √ b2 − 4ac x = _______________ 2a (i) x2 + 5x − 3 = 0 a = 1, b = 5, c = −3 b2 − 4ac = (5)2 − 4(1)(−3) = 37 ___
∴x=
−5 ± √ 37 __________
2 ×___1 −5 + √ 37 x = __________ OR 2
x = 0.54|1...
___
x=
−5 − √ 37 __________ 2
x = −5.54|1...
OR
x = 0.54 OR x = −5.54 to 2 d.p. (ii) x2 − 7x − 1 = 0 a = 1, b = −7, c = −1 b2 − 4ac = (−7)2 − 4(1)(−1) = 53 ___
∴x=
−(−7) ± √ 53 _____________
2×1 7 + √ 53 x = ________ OR 2 ___
___
x=
x = 7.14|0... OR
7 − √ 53 ________ 2
x = −0.14|0...
x = 7.14 OR x = −0.14 to 2 d.p. (iii) x2 − 4x − 2 = 0 a = 1, b = −4, c = −2 − 4(1)(−2) = 24 b2 − 4ac = (−4)2 ___ −(−4) ± √ 24 ∴ x = _____________ 2 ___ ×1 ___ 4 − √ 24 4 + √ 24 ________ ________ OR x = x= 2 2 x = 4.44|9... OR x = 4.45 OR
x = −0.44|9...
x = −0.45 to 2 d.p.
(c) Solve x2 − 10x + 21 = 0 (x − 3)(x − 7) = 0 x = 3 OR
x=7
Hence solve (2t + 1)2 − 10(2t + 1) + 21 = 0 2t + 1 = 3 ∴ 2t = 2 OR 2t + 1 = 7 ∴ 2t = 6 t = 1 OR
26
Active Maths 2 (Strands 1–5): Ch 17 Solutions
t=3
Q. 2. (a)
(i) Solve 2x2 − 3x = 0 x(2x − 3) = 0 x = 0 OR
2x = 3 3 x = __ 2
(ii) 10x2 + x − 2 = 0 (2x + 1)(5x − 2) = 0 2x + 1 = 0 OR 5x − 2 = 0 2 −1 ___ OR x = __ x= 5 2 (iii) 9x2 − 4 = 0 4 x2 = __ 9 __
√
4 x = ± __ 9 2 x = ±__ 3 (b)
(i) 2x2 + 8x − 3 = 0 a = 2, b = 8, c = −3 b2 − 4ac = (8)2 − 4(2)(−3) = 64 + 24 = 88 ___
∴x=
−8 ± √ 88 __________ 2×2
___
_______
___
Note: √ 88 = √4 × 22 = 2√ 22 ___
∴x=
−8 + 2√ 22 ___________
OR
4 ___ −4 + √22 x = __________ 2
OR
x=
___
−8 − 2√22 ___________
4 ___ −4 − √22 x = __________ 2
(ii) 5x2 − 11x + 1 = 0 a = 5, b = −11, c = 1 b2 − 4ac = (−11)2 − 4(5)(1) = 101 ____
∴x=
−(−11) ± √101 _______________
2 ____ ×5 11 + √101 x = __________ OR 10
____
x=
11 − √ 101 __________ 10
(iii) 6x2 − x − 3 = 0 a = 6, b = −1, c = −3 b2 − 4ac = (−1)2 − 4(6)(−3) = 73 ___
∴x=
−(−1) ± √73 _____________
2 ___ ×6 1 + √73 x = ________ OR 12
___
x=
1 − √ 73 ________ 12
Active Maths 2 (Strands 1–5): Ch 17 Solutions
27
Q. 3. (a)
(i) Given roots 2 and 3 Product Sum of x2 − x + ________ = 0 roots of roots
(
(
)
)
∴ x2 – (2 + 3)x + (2 × 3) = 0 x2 − 5x + 6 = 0 (ii) Given roots −4 and 2 x2 − (−4 + 2)x + (−4 × 2) = 0 x2 − (−2x) − 8 = 0 x2 + 2x − 8 = 0 (iii) Given roots 3 and −5 x2 − (3 − 5)x + (3 × −5) = 0 x2 − (−2x) − 15 = 0 x2 + 2x − 15 = 0 (iv) Given roots 2 and 0 x2 − (2 + 0)x + (2 × 0) = 0 x2 − 2x = 0 (b)
(i) x2 = 5x + 7 x2 − 5x − 7 = 0 a = 1, b = −5, c = −7 b2 − 4ac = (−5)2 − 4(1)(−7) = 53 ___
∴x=
−(−5) ± √ 53 _____________
2 ___ ×1 5 + √ 53 x = ________ OR 2
___
x=
5 − √ 53 ________ 2
x = 6.140|0...
OR
x = −1.140|0...
x = 6.140
OR
x = −1.140 to 3 d.p.
(ii) 2x2 + 1 = 10x 2x2 − 10x + 1 = 0 a = 2, b = −10, c = 1 b2 − 4ac = (−10)2 − 4(2)(1) = 92 ___
∴x=
−(−10) ± √ 92 ______________
2× 2 ___ 10 + √ 92 x = _________ OR 4
x = 4.897|9... OR ∴ x = 4.898
28
OR
___
x=
10 − √ 92 _________ 4
x = 0.102|0... x = 0.102 to 3 d.p.
Active Maths 2 (Strands 1–5): Ch 17 Solutions
(iii) 3 − x − 3x2 = 0 3x2
(×−1)
+x−3=0
a = 3, b = 1, c = −3 b2 − 4ac = (1)2 − 4(3)(−3) = 37 ___
∴x=
−1 ± √ 37 __________ 2×3
___
x=
(c)
(i)
___
−1 + √37 __________
OR
x=
−1 − √ 37 __________
6 x = 0.847|1...
OR
6 x = –1.180|4...
x = 0.847
OR
x = −1.180 to 3 d.p.
21x2
+ 2x − 3 = 0
(7x + 3)(3x − 1) = 0 ∴ 7x + 3 = 0 OR
3x − 1 = 0
3 x = −__ OR 7
1 x = __ 3
(ii) 5x2 + 6 = 13x 5x2 − 13x + 6 = 0 (5x − 3)(x − 2) = 0 5x − 3 = 0 OR 3 OR ∴ x = __ 5
x−2=0 x=2
(iii) 5(x2 − 4) = 2(x − 10) 5x2 − 20 = 2x − 20 5x2 − 2x = 0 x(5x − 2) = 0 ∴ x = 0 OR Q. 4. (a)
2 x = __ 5
(i) x2 – ax – b = 0 with roots 7 and −2 Sum of Product x2 − x+ =0 roots of roots
(
) (
)
∴ x2 − (7 − 2)x + (7 × −2) = 0 x2 − 5x − 14 = 0
∴
∴x+1=0
OR
x = −1 OR
x − 11 = 0 x = 11
Hence solve 3t − 1 = −1 OR
x2
+ ax + b = 0 with roots −8 and −2
x2
(x + 1)(x − 11) = 0
(3t − 1)2 − 10(3t − 1) − 11 = 0
∴ a = 5 and b = 14 (ii)
(b) Solve x2 − 10x − 11 = 0
3t − 1 = 11
3t = 0
OR
3t = 12
t=0
OR
t=4
− (−8 − 2)x + (−8 × −2) = 0
x2
− (−10x) + 16 = 0
x2 + 10x + 16 = 0 ∴ a = 10 and b = 16
Active Maths 2 (Strands 1–5): Ch 17 Solutions
29
(c)
(i) Solve to 1 d.p. x2 + 2x − 10 = 0 a = 1, b = 2, c = −10 b2 − 4ac = (2)2 − 4(1)(−10) = 44 ___
∴x=
−2 ± √ 44 __________
2 × 1___ ___ −2 − √ 44 −2 + √ 44 __________ __________ OR x = x= 2 2 x = 2.3|1... OR x = −4.3|1... x = 2.3
OR
x = −4.3 to 1 d.p.
(ii) Hence solve (t + 1)2 + 2(t + 1) − 10 = 0 t + 1 = 2.3 OR
t + 1 = −4.3
∴ t = 1.3 OR Q. 5.
t = −5.3 to 1 d.p.
N(t) = −2t2 + 11t + 13
(iv) The formula only gives valid values between t = 0 and t = 6_21. Outside these times negative answers are given, e.g. if t = 7
(i) When t = 0 N = −2(0)2 + 11(0) + 13 N = 13
N = −2(7)2 + 11(7) + 13
∴ 13,000 bacteria present initially
∴ N = −8 rejected, as we cannot have −8,000 bacteria present
(ii) When N = 25 Q. 6.
−2t2 + 11t + 13 = 25 −2t2
+ 11t − 12 = 0
(× −1)
∴ 1 − x = side length of large square
2t2 − 11t + 12 = 0
(1 − x)2 = 2(x)2
2t2 − 8t − 3t + 12 = 0
(1 − x)(1 − x) = 2x2
2t(t − 4) − 3(t − 4) = 0
1 − 2x + x2 − 2x2 = 0
(2t − 3)(t − 4) = 0
−x2 − 2x + 1 = 0
∴ 2t − 3 = 0 OR t − 4 = 0 3 t=4 t = __ OR 2 As t is time in hours, there will be 25,000 bacteria present at 1_12 hours and 4 hours.
x2 + 2x − 1 = 0
(iii) When N = 0 −2t2 + 11t + 13 = 0
(×−1)
2t2 − 11t − 13 = 0 ∴ 2t − 13 = 0
OR
(× −1)
a = 1, b = 2, c = −1 b2 − 4ac = (2)2 − 4(1)(−1) = 8 __
∴x=
−2 ± √ 8 _________
2 ×__1 −2 + √ 8 x = _________ OR 2 x = 0.414|2... OR
__
x=
−2 − √ 8 _________ 2
x = −2.414...
Since x > 0 reject x = −2.414...
(2t − 13)(t + 1) = 0
∴ x = 0.414 to 3 d.p. t+1=0
13 t = −1 t = ___ OR 2 ∴ No bacteria at 6_12 hours. (t = −1 rejected, as time cannot be negative)
30
Let x = side length of small square
Active Maths 2 (Strands 1–5): Ch 17 Solutions
Side length small square = 0.414 m to 3 d.p. Side length large square = 1 − 0.414 = 0.586 m to 3 d.p.
Q. 7.
2x(x − 3) + 9(x − 3) = 0
x = width of rectangle
(2x + 9)(x − 3) = 0
(i) length = 2x + 3
∴ 2x + 9 = 0
(ii) Area of rectangle = length × width ∴ Area = (2x + 3)x = 2x2 + 3x
∴
x−3=0
−9 x = ___ OR 2
x=3
since x > 0 then x = 3
(iii) Area = 27 m2 2x2
OR
width of rectangle = 3 m
+ 3x = 27
length of rectangle = 2 × 3 + 3
2x2 + 3x − 27 = 0 2x2 Q. 8.
=9m
− 6x + 9x − 27 = 0
(i) 20 m length of wire Perimeter of one square = 4(x + 0.5) = 4x + 2 ∴ Perimeter of other square = 20 − (4x + 2) = 18 − 4x ∴ Side length of other square 18 − 4x = _______ 4 = 4.5 − x (ii) (x + 0.5)2 + (4.5 − x)2 = 14.33 x2 + x + 0.25 + 20.25 − 9x + x2 − 14.33 = 0 ∴ 2x2 − 8x + 6.17 = 0 a = 2, b = −8, c = 6.17 b2 − 4ac = (−8)2 − 4(2)(6.17) = 14.64 ______
−(−8) ± √ 14.64 x = _______________ 2______ ×2 8 + √ 14.64 x = ___________ OR 4
______
x=
8 − √ 14.64 ___________ 4
x = 2.95|6...
OR
x = 1.04|3
x = 2.96
OR
x = 1.04 to 2 d.p.
We can use either value of x to find the side length of each square. If x = 2.96 then side lengths are x + 0.5 = 2.96 + 0.5 = 3.46 similarly 4.5 − x = 4.5 − 2.96 = 1.54 ∴ Side lengths are 1.54 m and 3.46 m Active Maths 2 (Strands 1–5): Ch 17 Solutions
31
Q. 9.
v(t) = 10 + 36t − 5t2 v = value of investment (‘000s) t = time in months (i) When t = 0 v = 10 + 36(0) − 5(0)2 v = 10 Original value of investment €10,000 (ii) When t = 3 v = 10 + 36(3) − 5(3)2 v = 73 Increase: €73,000 − €10,000 = €63,000 Investment increased by €63,000
Q. 10. Area of garden = 6x2 + 11x − 10
(iii) 10 + 36t −5t2 = 52.75 =0 5t2 − 36t + 42.75 ___________________ +36 ± √(−36)2 − 4(5)(42.75) t = ___________________________ 2(5) ____ 36 ± √ 441 36 ± 21 = __________ = ________ 10 10 t = 1.5 months or 5.7 months
6x2 + 11x − 10 = 6x2 + 15x − 4x − 10 = 3x(2x + 5) − 2(2x + 5) = (3x − 2)(2x + 5) Therefore, the original dimensions of the garden are 3x – 2 and 2x + 5 Area = l × w Comparing the new area and the original area: (3x − 2 + 2)(2x + 5 − 2) = [6x2 + 11x − 10] − 10 3x(2x + 3) = 6x2 + 11x − 20 6x2 + 9x = 6x2 + 11x − 20 −2x = −20 ∴ x = 10 OR (3x − 2 − 2)(2x + 5 + 2) = [6x2 + 11x − 10] − 10 (3x − 4)(2x + 7) = 6x2 + 11x − 20 6x2 + 21x − 8x − 28 = 6x 6x2 + 11x − 20 6x
(iv) When t = 4
2x = 8
v = 10 + 36(4) − 5(4)2 v = 74 When t = 5 v = 10 + 36(5) − 5(5)2 v = 65
i.e. €65,000
After 4 months the value of the investment starts to decline, dropping from €74,000 at 4 months to €65,000 at 5 months. This is why the investor chooses to sell after 4 months. t2 Q. 11. d = 3t + __ 4 d = distance in m t = number of seconds (i) When t = 1 12 d = 3(1) + __ 4 d = 3_14 3.25 m travelled in 1 second
32
∴x=4
i.e. €74,000
Active Maths 2 (Strands 1–5): Ch 17 Solutions
If x = 10 3x − 2 = 3(10) − 2
If x = 4 3x − 2 = 3(4) − 2
= 28 2x + 5 = 2(10) + 5
= 10 2x + 5 = 2(4) + 5
= 25
= 13
Original dimensions of the garden are 25 m by 28 m OR 10 m by 13 m
(ii) When d = 14 t2 3t + __ = 14 4 12t + t2 = 56
(× 4)
t2 + 12t − 56 = 0 a = 1, b = 12, c = −56 b2 − 4ac = (12)2 − 4(1)(−56) = 368 ____
t=
−12 ± √ 368 ____________
2 × 1____ −12 + √ 368 t = ____________ 2
t = 3.5|91...
____
−12 − √ 368 ____________
OR
t=
OR
t = −15.591...
2
Since t ≥ 0, t = −15.591... rejected ∴ t = 3.6 seconds to 1 d.p. distance travelled (iii) Average speed = _______________ time taken when d = 32 t2 (× 4) ⇒ 3t + __ = 32 4 12t + t2 = 128 t2 + 12t − 128 = 0 a = 1, b = 12, c = −128 b2 − 4ac = (12)2 − 4(1)(−128) = 656 ____
∴t=
−12 ± √ 656 ____________
2 × 1____ ____ −12 − √ 656 −12 + √ 656 ____________ ____________ OR t = t= 2 2 t = 6.8|0... OR t = −18.80...
Since t ≥ 0, t = −18.80... rejected ∴ t = 6.8 seconds to 1 d.p. ∴ Average speed = 32 m/6.8 = 4.7 m/s to 1 d.p. Q. 12. 193
x
263 – x
Using Pythagoras’ theorem x2 + (263 − x)2 = 1932 x2 + 69,169 − 526x + x2 − 37,249 = 0 2x2 − 526x + 31,920 = 0 x2
(÷ 2)
− 263x + 15,960 = 0 Active Maths 2 (Strands 1–5): Ch 17 Solutions
33
a = 1, b = −263, c = 15,960 b2 − 4ac = (−263)2 − 4(1)(15,960) = 5,329 ______
−(−263) ± √5,329 x = _________________ 2 ______ ×1 263 + 5,329 √ x = _____________ OR 2 x = 168
______
x=
263 − √5,329 _____________ 2
x = 95
OR
The lengths of the sides of the triangle are 193 cm, 168 cm and 95 cm. Q. 13. h(t) = 54t − 5t2
Q. 14. x = width of garden
h = height in m
House
t = time in seconds x
(i) At t = 3
x
h = 54(3) − 5(3)2
y
h = 117
80 metres of fencing
Height will be 117 m
(i) y + x + x = 80
(ii) When launched t = 0 ∴ h = 54(0) − 5(0)2
y = 80 − 2x (ii) Area = l × w
h=0
= (80 − 2x)x
Height is zero metres
= 80x − 2x2
(iii) When h = 0 ⇒ 54t − 5t2 = 0
(×−1)
5t2 − 54t = 0 t(5t − 54) = 0 ∴ t = 0 OR
54 t = ___ 5
t = 10_45 It will take 10.8 seconds for the rocket to return to ground.
(iii) 80x − 2x2 = 487.5 2x2 − 80x + 487.5 = 0 a = 2, b = −80, c = 487.5 b2 − 4ac = (−80)2 −4(2)(487.5) = 2,500 ______
80 ± √2,500 _____________
x=
2(2)
x = 32.5 OR
80 ± 50 = ________ 4
x = 7.5
Answer 1: width = 32.5 m length = 80 − 2(32.5) = 15 m Answer 2: width = 7.5 m length = 80 − 2(7.5) = 65 m
34
Active Maths 2 (Strands 1–5): Ch 17 Solutions
Q. 15.
x y
x y
x y
x
x
y x
Length of fencing = 6x + 4y Length of fencing = 800 m ∴ 6x + 4y = 800 4y = 800 − 6x 3 y = 200 − __x 2
(
)
3 Area = 200 − __x (3x) = 10,200 2 9x2 600x − ___ – 10,200 = 0 (× −2) 2 9x2 − 1,200x + 20,400 = 0 a = 9, b = −1,200, c = 20,400 b2 − 4ac = (−1,200)2 − 4(9)(20,400) = 705,600 ________
−(−1,200) ± √ 705,600 x = _____________________ 2×9 1,200 − 840 1,200 + 840 x = ____________ OR x = ____________ 18 18 x = 113_13 OR
x = 20
3 If x = 20 then y = 200 − __(20) 2 y = 170 3 _ 1 If x = 1133 then y = 200 − __ 113_13 2 y = 30
(
)
∴ Possible sets of lengths and widths of each plot are 20 m and 170 m or 30 m and 113_13 m. Q. 16.
(a)
1
8
7
x
2
3
8m
x
4
10 m
6
5
Eight sections numbered 1 to 8 Areas of 1, 3, 5 and 7 are the same at x × x Areas of 2 and 6 are the same at 8 × x Active Maths 2 (Strands 1–5): Ch 17 Solutions
35
(b)
Areas of 4 and 8 are the same at 10 × x ∴ Overall area of path = 4(x2) + 2(8x) + 2(10x) = 4x2 + 16x + 20x = 4x2 + 36x Area of plot = 143 m2 Area of garden = 80 m2 ∴ Area of path = 63 m2 Kevin’s equation is Area of path + area of garden = total area (4x2 + 36x) + 80 = 143 Simplified: 4x2 + 36x − 63 = 0
(c)
2x + 8 x
x
x
8m
2x + 10
10 m
(d) Area of plot = 143 m2 From Elaine’s diagram total area = (2x + 8)(2x + 10) ∴ (2x + 8)(2x + 10) = 143 4x2 + 20x + 16x + 80 − 143 = 0 4x2 + 36x − 63 = 0 (e) Solving 4x2 + 36x − 63 = 0 a = 4, b = 36, c = −63 b2 − 4ac = (36)2 − 4(4)(−63) = 2,304 ______ −36 ± √2,304 ______________ ∴x= 2×4 −36 + 48 ∴ x = _________ OR 8 x = 1_12
OR
−36 − 48 x = _________ 8 x = −10_12
Since x > 0, x = –10_12 rejected
∴ x = 1_12
The width of the path is 1.5 m.
36
Active Maths 2 (Strands 1–5): Ch 17 Solutions
(f) Tony’s method of guess and check. If x = 1 then the overall dimensions of the plot would have been 8 + 1 + 1 = 10 and 10 + 1 + 1 = 12 Area: 10 × 12 = 120 m2 which is smaller than 143 m2 so the path must be greater than 1 m If x = 2 then the dimensions are 8 + 2 + 2 = 12 and 10 + 2 + 2 = 14 giving an area of 12 × 14 = 168 m2 which is too big If x = 1.5 then the dimensions are 8 + 1.5 + 1.5 = 11 and 10 + 1.5 + 1.5 = 13 giving 11 × 13 = 143 m2 is the correct area (g) For simple whole numbers like a path of 1 or 2 m, Tony’s method is quick and easy. However, for large numbers or decimal lengths, Elaine’s method is the most direct. Q. 17. (a)
Larger length: Sum of lengths: Shorter length Larger length
p
p+q
_____
_________
q
p
p (b) x = __ q 1 (c) 1 + __ x
1 (j) ______ ≈ 0.618 1.618 1 So, 1 + ______ ≈ 1.618 1.618 So, the golden ratio minus its reciprocal equals 1.
p+q p ______ = (d) __ q p q p __ __ = 1 + q p 1 __ x=1+ x x≠0 x2 = x + 1
OR 1 x = 1 + __ x (from part (d))
x2 − x − 1 = 0 __
(e) x =
So, the golden ratio minus its reciprocal equals 1.
1 ± √5 _______ 2
x ≈ −0.618 OR
(h) Correct to the nearest thousandth, the golden ratio is equal to 1.618. So, if one quantity is 61.8% larger than another quantity, then the two quantities are in golden ratio to each other. 1 (i) −__ x1 = 1.618 = x2 = golden ratio (to three decimal places)
x ≈ 1.618
(k) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
(f) x1 = −0.618 x2 = 1.618 (g) x2
Active Maths 2 (Strands 1–5): Ch 17 Solutions
37
(l)
(Term 2) ÷ (Term 1)
1.000 (Term 3) ÷ (Term 2) 2.000 (Term 4) ÷ (Term 3) 1.500 (Term 5) ÷ (Term 4) 1.667 (Term 6) ÷ (Term 5) 1.600 (Term 7) ÷ (Term 6) 1.625 (Term 8) ÷ (Term 7) 1.615 (Term 9) ÷ (Term 8) 1.619 (Term 10) ÷ (Term 9) 1.618
(m) Consecutive in the Fibonacci sequence are approximately in golden ratio to each other the further we move into the sequence.
38
Active Maths 2 (Strands 1–5): Ch 17 Solutions