DOCUMENT No:
SHEET
QT200 SUBJECT
ABUT B1-2c-A SLS CRACK WIDTH - PILE
REFERENCE
BS5400-4 Sec. 5.8.8.2
Table 13
CALCULATIONS
Section Specification Permissible Crack Width Moduli of Elasticity of Steel Moduli of Elasticity of Concrete Modular Ratio Width of the Section Overall Depth of the Section Nomimal Concrete Cover Longitudinal Reinforcement; number, diameter, spacing
w' Es 0.75Ec
cnom
= = = = = = =
0.125 200000 25500 7.84 2000 2000 40
36 As
=
H71 141372
acr
=
89.9
a'
=
1940
Moment due to Permanent Loads Moment due to Live Loads
Mg Mq
= =
6277.2 4184.8
Axial Force; Compression (+) , Tension (-) Moment about y-axis
P My
= =
9124 10462
Moment about z-axis
Mz
=
-9
σc σs
= =
14.02 88.42
n b h
Distance from the point considered to the surface of the nearest longitudinal bar Distance from the compression face to the point at which the crack width is being calculated Staad Analysis Result
BIAX Analysis Result Maximum Compressive Stress in Concrete Maximum Tensile Stress in Steel Strain Diagram ( σ = Eε ) εC =
0.00055 x = 1020 mm neutral axis
1840 mm εS = ε1 =
160 mm
0.000442 0.000496
Stiffening Effect of Concrete (ε2) ε2
=
εm
=
3.8bh (a' - x) 1 εSAs (h - x) ε1 - ε2 , but not greater than ε1
Mq
-
Mg
10-9
=
0.000076
=
0.000420
Design Crack Width (w)
w
=
3 * acr * εm 1 + 2 (acr - cnom)/(h - x)
=
0.103
< 0.125, SAY OK
provided reinforcement is adequate
SHEET
-A SLS CRACK WIDTH - PILE CALCULATIONS
REMARKS
mm MPa MPa mm mm mm 150 mm2 mm mm
kN-m kN-m kN kN-m kN-m
MPa MPa
neutral axis
0.000442 0.000496
0.000076 0.000420
Equivalent dia. T50 + T50