Emplee el método de bisección para encontrar la raíz de la siguiente ecuación en el intervalo [-1.5 , -2.5], siendo 𝐟(𝐱) = 𝐱 − 𝟒𝐜𝐨𝐬𝐱 + 𝒆𝒙 , e iterar hasta que el error estimado sea menor o igual al 1%. SOLUCIÓN: Sea 𝐟(𝐱) = 𝐱 − 𝟒𝐜𝐨𝐬𝐱 + 𝒆𝒙 , 𝒙∗ ∈ [-1.5 , -2.5]
𝑎0 + 𝑏0 2
=
−1.5− 2.5 2
= −2.000000000
𝑋0 = −2.000000000
𝑎1 = 𝑋0 = −2.000000000
f(𝑎0 )f( 𝑋0 )= f(-1.5)f(-2.000000000) > 0 ⇒ -
𝑏1 = 𝑏0 = −2.500000000
-
Sea i=1 [𝑎1 , 𝑏1 ] = [−2.000000000 , −2.500000000]
𝑋1 =
ξs ≤ 1%
Sea i=0 [𝑎0 , 𝑏0 ] = [−1.5 , −2.5]
𝑋0 =
con un
𝑎1 + 𝑏1 2
=
−2.000000000− 2.500000000 2
= −2.250000000
𝑋1 = −2.250000000
𝑎2 = 𝑎1 = −2.000000000
f(𝑎1 )f( 𝑋1 )= f(-2.000000000)f(-2.250000000) < 0 ⇒ -
+
𝑏2 = 𝑋1 = −2.250000000
Sea i=2 [𝑎2 , 𝑏2 ] = [−2.000000000 , −2.250000000]
𝑋2 =
𝑎2 + 𝑏2 2
=
−2.000000000− 2.250000000 2
= −2.125000000
𝑋2 = −2.125000000
𝑎3 = 𝑎2 = −2.000000000
f(𝑎2 )f( 𝑋2 )= f(-2.000000000)f(-2.125000000) < 0 ⇒ -
+
Sea i=3 [𝑎3 , 𝑏3 ] = [−2.000000000 , −2.125000000]
𝑋3 =
𝑎3 + 𝑏3 2
=
−2.000000000− 2.125000000 2
= −2.062500000
𝑋3 = −2.062500000
𝑎4 = 𝑋3 = −2.062500000
f(𝑎3 )f( 𝑋3 )= f(-2.000000000)f(-2.062500000) > 0 ⇒ -
𝑏4 = 𝑏3 = −2.125000000
-
Sea i=4 [a4 , b4 ] = [−2.062500000 , −2.125000000]
𝑋4 =
𝑏3 = 𝑋2 = −2.125000000
𝑎4 + 𝑏4 2
=
−2.062500000− 2.125000000 2
= −2.093750000
𝑋4 = −2.093750000
𝑎5 = 𝑎4 = −2.062500000
f(𝑎4 )f( 𝑋4 )= f(-2.062500000)f(-2.093750000) < 0 ⇒ -
+
𝑏5 = 𝑋4 = −2.093750000
Sea i=5 [a5 , b5 ] = [−2.062500000 , −2.093750000]
𝑋5 =
𝑎5 + 𝑏5 2
=
−2.062500000− 2.093750000 2
= −2.078125000
𝑋5 = −2.078125000
𝑎6 = 𝑋5 = −2.078125000
f(𝑎5 )f( 𝑋5 )= f(-2.062500000)f(-2.078125000) > 0 ⇒ -
-
Sea i=6 [a6 , b6 ] = [−2.078125000 , −2.093750000]
𝑋6 =
𝑏6 = 𝑏5 = −2.093750000
𝑎6 + 𝑏6 2
=
−2.078125000− 2.093750000 2
= −2.085937500
𝑋6 = −2.085937500
𝑎7 = 𝑎6 = −2.078125000
f(𝑎6 )f( 𝑋6 )= f(-2.078125000)f(-2.085937500) < 0 ⇒ -
n 0 1 2 3 4 5 6
Entonces la raíz es :
𝑏7 = 𝑋6 = −2.085937500
+
𝑋𝑖 −2.000000000 −2.250000000 −2.125000000 −2.062500000 −2.093750000 −2.078125000 −2.085937500
X5 = -2.078125000
|𝑋𝑖+1 − 𝑋𝑖 | 0.250000000 0.125000000 0.062500000 0.031250000 0.015625000 ≤ 0.01 0.007812500