Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM MOTOR DESIGN Mehdi Abolhassani, PhD Austin, Texas Tel: (703)964-7121
[email protected]
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-1
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM Rotor Configurations q d
V-type
Tangential
Multi-barrier
Radial
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-2
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM Motor Characteristics • IPM rotor Configurations exhibit magnetic paths with different permeance, from which possibility of developing reluctance torque. • The d-axis is set to be the polar axis (PM axis), while the q-axis is 90° in advance. • Since the permeability of Pm are similar to air, the d-axis magnetic permeance is lower than the q-axis yielding Ld
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-3
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Torque in PM Motors
T
Torque of PM Motors
q
=
3p 2
[ϕ
m
I
q
+
(L − L )I I ]
PM Torque
q
d
q
Reluctance Torque
ξ=
Saliency Ratio
d
L L
q
d
T
Torque of PM Motors with Saliency ratio ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
q
=
3p 2
[ϕ
m
I − (ξ − 1) Ld I I q
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
d
q
] 6-4
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM Motor Torque PM Torque
+
Reluctance Torque
=
IPM motor Torque
Magnet
+
Surface-mounted PM Motor (SPM)
Air
Magnet
=
Synchronous Reluctance Motor ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
Interior PM Motor (IPM)
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-5
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Optimum Phase Advance Angle in IPM
1.4
Optimum Angle
Magnet Torque
1.2
Reluctance Torque Mag.+Rel Tq=IPM Tq
Torque (p.u.)
1 0.8 0.6 0.4 0.2 0 0
10
20 25 30
40
50
60
Advanced firing angle(Deg.) ©2010 Advanced MotorTech LLC Largo FL USA & ©2010 Mehdi Abolhassani, Austin TX USA
©2010 Advanced MotorTech LLC Largo FL USA
70
& ©2010 Mehdi Abolhassani, Austin TX USA
80
90 6-6
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Optimum Phase angle;Max Torque per Amp T = λ pmiq + ( Ld − Lq )id iq =
Lq=2*Ld
= λ pm i sin(δ ) + ( Ld − Lq )i 2 cos(δ ) sin(δ )
18
dT = λ pmi cos(δ ) + ( Ld − Lq )i 2 cos(2δ ) = 0 ⇒ dδ λ pm i cos(δ ) + ( Ld − Lq )i 2 (2 cos 2 (δ ) − 1) = 0 cos 2 (δ ) +
ψ mi 2( Ld − Lq )i 2
cos(δ ) −
1 =0 2
16 14 12 10 8 6 4
cos(δ ) = −
2
1 λ pm + ± 4( L − L )i 2 4( Ld − Lq )i d q
λ pm
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
2 -10
-5
0
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
5
6-7
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Ideal Field weakening Characteristics
Ideal Torque Speed Curve
Ideal Power Speed Curve
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-8
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Field Weakening in PM Motors Excitation flux of PMs are fixed and can not be varied as separately excited DC motor. However, a control of the total flux in the d-axis is achieved by introducing an armature flux against the fixed excitation field from the magnets. It is achieved by injecting a negative d-axis current Id.
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-9
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Field Weakening in IPM Motors Voltage Limit V ≥ ω (λ PM + Ld I d ) + (Lq I q ) 2
2
2
2
b
Q-axis
Q-axis
jωLqiq jωLdid
jωLqiq
E
Max Vs Loci
Vs
is
jωLdid
iq δ
D-axis
δ
D-axis
Vs
λPm
id
is
Max Vs Loci
E iq
λPm
id
(b)
(a)
Phasor diagram of IPM Motor
Q-axis
jωLqiq
a) At low speed
jωLdid
b) At rated speed c) Beyond rated speed with field weakening
Max Vs Loci
Vs
is
δ
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
E
(c)
iq
id
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
D-axis
λPm
6-10
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Field Weakening in SPM Motors V ≥ ω (λ PM + Ld I d ) + (Lq I q ) Voltage Limit 2
2
2
2
b
Phasor diagram of PM Motor a) At low speed b) At rated speed c) Beyond rated speed with field weakening (Impossible) d) Beyond rated speed with field weakening
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-11
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM Parameter Plane Torque-Speed characteristics of IPM depends on two independent parameters: The saliency ratio ξ,and Normalized Magnet Flux Linkage φmn Normalized Magnet flux linkage ϕ
mn
=
ϕ V
m
ω b
b
Source: Soong W.L., Miller T.J.E., “Field-weakening performance of brushless synchronous AC motor drives”, IEE Proceedings of Electric Power Application, 141(6), pp. 331 ~ 340, 1994. ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-12
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Optimal IPM Parameters
Source: Soong W.L., Miller T.J.E., “Field-weakening performance of brushless synchronous AC motor drives”, IEE Proceedings of Electric Power Application, 141(6), pp. 331 ~ 340, 1994. ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-13
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Optimal IPM Design
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-14
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Constant Power Speed Range Constant Power Speed Range
SR =
ω ω
sr
Max speed with power equal to rated power
b
Surface Permanent Magnet motor (SPM): - Commercial SPM designs generally have a Ψmn between 0.83 and 0.96. The constant power speed range (SR) is usually lower than 2. Single-barrier synchronous reluctance motor: - A SR below 2 and with saliency ratios in the range from 2 to 5. Single-barrier IPM motor: - SR between 1.5 and 3. Multiple-barrier (axially laminated) IPM motor: - High saliency ratios between 5 and 14 can be achieved. Theoretically this implies that these designs offer a wide field weakening region. - It is possible to obtain a design with the optimum field-weakening performance (infinite speed range) by adding a suitable quantity of permanent magnets. For example, one of the SOON (marked X) designs ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-15
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Effect of Magnetic Saturation on Ld and Lq Lq, Ld
Lq Ld Id, Iq
Magnetic saturation has a significant impact on the performance characteristics of IPM machines. Lq is very sensitive to magnetic saturation as Iq increases. Ld tends to be much less sensitive to magnetic saturation because this magnetic path is dominated by the thickness of Pm that behaves as air. ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-16
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Lamped Parameter Magnetic Equivalent Circuit •It is easy to relate to physical properties. •It can be evaluated quickly, making them conveniently compatible with the optimization software. •Torque ripple is ignored and must be evaluated during post-processing. •Magnetic cross-coupling between the d- and q-axes is ignored. •Demagnetization thresholds cannot be accurately evaluated.
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-17
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Optimal Control Under Voltage & Current Constraint •Max available inverter current
I
=
a
2
2
d
q
i +i ≤ I
am
•Max available output voltage of inverter which depends on dc-link voltage Vdc
V •Assuming steady state and
V
V =ω o
om
a
=
2
2
d
q
v + v ≤V
= V am − R a I am
(L i +ϕ ) (L i ) 2
e
am
pm +
d d
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
2
q q ≤ V om
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-18
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Current-Limit Circles and the Voltage-Limit Ellipse The voltage-limit ellipse shrinks to the center point of M as the speed increases. The current vector satisfying both constraints of voltage and current must be inside of both the current limit circle and voltage limit ellipse.
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-19
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Max Torque Production I • In the consideration of voltage and current constraints, the max torque per amp can be achieved as: • Region I( constant torque region): Below the base speed, the maximum torque is produced by maximum torque per amp control. • Region II (FW, constant VA region): Beyond the base speed, the current is controlled by the fluxweakening control, (Max voltage) Vo=Vom. • Region III( FW, decreasing VA region) In case λdmin= λpm-LdIam<0, max torque per volt control can be applied. ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-20
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Max Torque Production II
Reference: S Morimoto, et-al, Expansion of operation limits for permanent magnet motor by current vector control considering inverter capacity ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-21
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Characteristics of Max Torque Control with Current and Voltage Constraints
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-22
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Design Example Design , 300W, 18V battery operated, 22000RPM motor for power tools application • Design 1 : IPM • Design 2 : SPM
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-23
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM design data 4pole/6 Slot , IPM Lamination: M19, 0.5mm Magnet:
Neomax35
SOD:
49mm
Airgap:
0.5mm
ROD:
25.5 mm
Slot opening:
2mm
Stack length:
11mm
Magnet dimension: 12.7x3.5x11 Copper weight:
32gr
Magnet weight:
14.5 gr 19.5 V, 0.130 Ω
Wire:
AWG 18
Battery:
TPC:
6
Fan power coefficient: 1.5 e-12
Ra:
32mΩ
Control:
6-step control, 27±3 °advanced
RDS (on)=5mΩ Ω ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-24
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
SPM design data 4pole/6 Slot , SPM Lamination: EMP-24, 0.5mm Magnet:
Neomax35
SOD:
49mm
Airgap:
1mm
ROD:
24.5 mm
Slot opening:
2mm
Stack length:
11mm
Copper weight:
32gr
Magnet weight:
11 gr
19.5 V, 0.130 Ω
Wire:
AWG 18
Battery:
TPC:
6
Fan power coefficient: 1.5 e-12
Ra:
32mΩ
Control: 6-step control, 0°advanced RDS (on)=5mΩ ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-25
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
RPM
SPM and IPM Motor Performance 22000
400
20000
350
18000
300
16000
250
14000
200
12000
150
10000
100
8000
50
6000 0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
IPM SPM
0 0.40
Torque (N.m) ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-26
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
SPM and IPM Motor Performance 85%
80%
Efficiency %
75%
70% IPM SPM 65%
60%
55%
50% 50
100
150
200
250
300
350
Out Power ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-27
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
RPM
IPM Design Sensitivity to Advance Angle Variation 22000
400
20000
350
18000
300
16000
250
14000
200
12000
150
10000
100
8000
50
6000 0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
Torque (N.m)
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
27 30 24
0 0.40 6-28
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
IPM Design Sensitivity to Advanced Angle Variation II 85%
80%
Efficiency %
75%
70%
27 30 24
65%
60%
55%
50% 50
100
150
200
250
300
Out Power
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
350 6-29
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Design Example II • Multiphase Fault Tolerant IPM Motor Drives for HEV Applications
Reference: M. T. Abolhassani, “A Novel Multiphase Fault Tolerant Permanent Magnet Motor Drive for Fuel cell Powered Vehicles’, Proceedings of IEEE Vehicles Power Propulsion Conference, Dallas, TX, Sept. 2007.
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-30
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Fault Tolerant Motor Drive – The concept of a fault tolerant motor drive is usually referred to a system which is operable after occurring fault with minimal derating in performance.
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-31
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Faults in Motor Drive System • Winding open circuit; • Winding short-circuit (partial turn to turn or complete); • Inverter switch open-circuit (analogous to winding open-circuit); • Inverter switch short-circuit (analogous to winding short-circuit); • DC link capacitor failure.
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-32
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Fault Tolerant Motor Drive, Design and Requirements • Thermal and magnetic isolation between coils; • Low mutual coupling between phases; • Higher reliability and performance; • Low short circuit current ==Higher INDUCTANCE.
Multiphase Concentrated winding Machine • H-bridge converter;
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-33
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Electromagnetic Torque T=
1 K w . nl . nc .Q. Bˆ g . A g .Iˆ. cos(ϕ ) 4π
Kw : Winding factor nl : Number of layers nc : Number of turns per coil Q : Number of slots Bg : Peak flux density in airgap Ag : Airgap area I : Peak current θ : Current angle ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-34
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Power Device Failure •Short-circuit current path when T3 is faulted.
•Single phase bridge
Vdc/2
Vdc/2
T1
D1
T3
D3
T2
D2
T4
D4
Vdc/2
Vdc/2
T1
D1
T3
T2
D2
T4
I sc ( pu ) =
Peak short-circuit current
ϕf L s ( pu )
ϕf
I sc ( pu ) =
Turn-to-turn short-circuit current
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
N .ϕ f N = L s ( pu ) L s ( pu ) N2
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-35
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Geometry of Proposed IPM Motor Specification
Value B- E+
Rated power (kW)
E+ C-
B+ B+
150
Rated speed( RPM)
E- E-
C+ C+
BD+
5000
CA+
D-
Maximum speed (RPM) Rated torque( N.m)
12000 226
Rated current( A)
125
DC bus voltage (volts)
420
AA-
DD+ A-
A+ D-
A+ A+
D+ D+ AC+
DB+ C-
BC-
BC+
E-
E+ E+
E-
B+
5 phase , 18 poles, 20Slots ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-36
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Windings Design Harmonics winding factor
Value
Kdp1
0.9755
Kdp3
0.7939
Kdp5
0.5000
Kdp7
0.2061
Kdp9
0.0245
Kdp11
0.0245
Kdp13
0.2061
Kdp15
0.5000
Kdp17
0.7939
Kdp19
0.9755
Description
Value
Armature phases
5
Turn per coil
12
Armature winding branches
2
Wire size
13x awg17
Max stator slot fill
0.68%
Armature winding resistance
5.55E-03
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-37
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Airgap flux density 1.5
Flux density(T)
1.0 0.5 0.0 -0.5 -1.0 -1.5 -1620
-1260
-900
-540
-180
180
540
900
1260
1620
Electrical angle (Deg.)
100% Airgap flux density spectrum %
90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1
3
5
7
9
11
13
15
17
19
Harmonics order ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
21
6-38
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Armature Reaction at Peak Current 1.5
0.5 0.0 -0.5 -1.0 -1.5 -1620
-1260
-900
-540
-180
180
540
900
1260
1620
Rotor Position in electrical degrees
100% Airgap flux density due to windings
Air gap flux density (T)
1.0
90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1
3
5
7
9
11
13
15
17
©2010 Advanced MotorTech LLC Largo FL USA & ©2010 Mehdi Abolhassani, Austin TX USA Harmonics order
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
19
21
6-39
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Cogging Torque 1.00
Cogging torque(N.m)
0.80 0.60 0.40 0.20 0.00 -0.20 -0.40 -0.60 -0.80 -1.00 0
3
6
9
12
15
18
Rotor position in electrical degree ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-40
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Phase and Line Bk-emf @5000RPM 400 300 Back emf (V)
200 100 0 -100 -200 -300 -400 0
180
360
540
720
Electrical Angle (Deg.) Phase Back EMF
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
Line Back EMF
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-41
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Torque Production @ 5000RPM 235 Healthy
Electromagnetic Torque (N.m)
230 225 0
90
180
270
360
450
540
630
720
300 1 switch fault 200 100 0
90
180
270
360
450
540
630
720
300 1 phase fault 200 100 0
90
180
270
360
450
540
Rotor position in electrical degree
Condition
Torque (N.m)
630
Torque ripple %
Healthy
224
±0.5
Failure in 1 switch
201
±24
Failure in one phase
177
±50
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
720
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-42
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Torque Speed Performance 250
Torque (N.m )
200 150 100 50 0 0
2000
4000
6000
8000
10000
12000
Speed (RPM) Healthy
1 Switch fault
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
1 Phase fault
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-43
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Power Performance Curves 160000
Out Power (W )
140000 120000 100000 80000 60000 40000 20000 0 0
2000
4000
6000
8000
10000
12000
Speed (RPM) Healthy
1 Switch fault
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
1 Phase fault
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-44
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Efficiency Curves
Efficiency %
100%
95%
90%
85% 0
2000
4000
6000
8000
10000
12000
14000
Speed (RPM) Healthy
1 Switch fault
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
1 Phase fault
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-45
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
U n s a tu ra te d p h a s e s e lf-in d u c ta n c e in H
Phase Self Inductance 5.00E-04
4.50E-04
4.00E-04 3.50E-04
3.00E-04
2.50E-04 0
180
360
540
720
Rotor Position in electrial degree ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-46
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Short Circuit Current 250
S hort C irc uit C urrent (A )
200 150 100 50 0 -50 -100 -150 -200 -250 0
90
180
270
360
Rotor Position in Electrical Degree
©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-47
Design of Interior Permanent Magnet and Brushless DC Machines – Taking Theory to Practice
May 10-12, 2010, Torrance, CA
Conclusions • A Fault tolerant 5-phase IPM motor drive (Concentrated windings with18 poles, 20 slots; • Max Cogging torque 0.8N.m • ± 0.5% Torque ripple • Short Circuit Current :0.88 pu • 2% mutual inductance ©2010 Advanced MotorTech LLC Largo FL USA
©2010 Advanced MotorTech LLC Largo FL USA
& ©2010 Mehdi Abolhassani, Austin TX USA
& ©2010 Mehdi Abolhassani, Austin TX USA
6-48